Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1989 Dec;60(6):893–896. doi: 10.1038/bjc.1989.386

Conformational changes in chromatin structure induced by the radioprotective aminothiol, WR 1065.

A T Vaughan 1, D J Grdina 1, P J Meechan 1, A E Milner 1, D J Gordon 1
PMCID: PMC2247278  PMID: 2605099

Abstract

WR 1065, 2-[(minopropyl) amino] ethanethiol is an effective scavenger of free radicals. When present during irradiation it reduces cellular DNA damage as analysed by alkaline elution from filters. The same technique indicates that without irradiation, WR 1065 has no effect of DNA integrity. Using nucleoid analysis, where DNA damage is detected at the level of replicon clusters, WR 1065 distorts replicon supercoiling without breaking the DNA molecule. This confirmational change in nucleoid structure occurs with no detectable change in nucleoid protein content. It is proposed that perturbation of replicon supercoiling affects the process of normal DNA synthesis and strand break rejoining, allowing a longer time for the accurate repair of DNA damage.

Full text

PDF
893

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Billen D. The effects of radioprotectors on DNA polymerase I-directed repair synthesis and DNA strand breaks in toluene-treated and X-irradiated Escherichia coli. Radiat Res. 1983 Jul;95(1):158–164. [PubMed] [Google Scholar]
  2. Cook P. R., Brazell I. A. Detection and repair of single-strand breaks in nuclear DNA. Nature. 1976 Oct 21;263(5579):679–682. doi: 10.1038/263679a0. [DOI] [PubMed] [Google Scholar]
  3. Cook P. R., Brazell I. A., Jost E. Characterization of nuclear structures containing superhelical DNA. J Cell Sci. 1976 Nov;22(2):303–324. doi: 10.1242/jcs.22.2.303. [DOI] [PubMed] [Google Scholar]
  4. Dijkwel P. A., Wenink P. W. Structural integrity of the nuclear matrix: differential effects of thiol agents and metal chelators. J Cell Sci. 1986 Aug;84:53–67. doi: 10.1242/jcs.84.1.53. [DOI] [PubMed] [Google Scholar]
  5. Grdina D. J., Guilford W. H., Sigdestad C. P., Giometti C. S. Effects of radioprotectors on DNA damage and repair, proteins, and cell-cycle progression. Pharmacol Ther. 1988;39(1-3):133–137. doi: 10.1016/0163-7258(88)90051-4. [DOI] [PubMed] [Google Scholar]
  6. Grdina D. J., Nagy B., Hill C. K., Sigdestad C. P. Protection against radiation-induced mutagenesis in V79 cells by 2-[(aminopropyl)amino] ethanethiol under conditions of acute hypoxia. Radiat Res. 1989 Feb;117(2):251–258. [PubMed] [Google Scholar]
  7. Grdina D. J., Nagy B., Hill C. K., Wells R. L., Peraino C. The radioprotector WR1065 reduces radiation-induced mutations at the hypoxanthine-guanine phosphoribosyl transferase locus in V79 cells. Carcinogenesis. 1985 Jun;6(6):929–931. doi: 10.1093/carcin/6.6.929. [DOI] [PubMed] [Google Scholar]
  8. Grdina D. J., Nagy B. The effect of 2-[(aminopropyl)amino] ethanethiol (WR1065) on radiation-induced DNA damage and repair and cell progression in V79 cells. Br J Cancer. 1986 Dec;54(6):933–941. doi: 10.1038/bjc.1986.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grdina D. J., Sigdestad C. P., Carnes B. A. Protection by WR1065 and WR151326 against fission-neutron-induced mutations at the HGPRT locus in V79 cells. Radiat Res. 1989 Mar;117(3):500–510. [PubMed] [Google Scholar]
  10. Hill C. K., Nagy B., Peraino C., Grdina D. J. 2-[(Aminopropyl)amino]ethanethiol (WR1065) is anti-neoplastic and anti-mutagenic when given during 60Co gamma-ray irradiation. Carcinogenesis. 1986 Apr;7(4):665–668. doi: 10.1093/carcin/7.4.665. [DOI] [PubMed] [Google Scholar]
  11. LePecq J. B., Paoletti C. A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol. 1967 Jul 14;27(1):87–106. doi: 10.1016/0022-2836(67)90353-1. [DOI] [PubMed] [Google Scholar]
  12. Lebkowski J. S., Laemmli U. K. Evidence for two levels of DNA folding in histone-depleted HeLa interphase nuclei. J Mol Biol. 1982 Apr 5;156(2):309–324. doi: 10.1016/0022-2836(82)90331-x. [DOI] [PubMed] [Google Scholar]
  13. Meyn R. E., Jenkins W. T. Variation in normal and tumor tissue sensitivity of mice to ionizing radiation-induced DNA strand breaks in vivo. Cancer Res. 1983 Dec;43(12 Pt 1):5668–5673. [PubMed] [Google Scholar]
  14. Milner A. E., Vaughan A. T., Clark I. P. Measurement of DNA damage in mammalian cells using flow cytometry. Radiat Res. 1987 Apr;110(1):108–117. [PubMed] [Google Scholar]
  15. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  16. Phillips T. L. Rationale for initial clinical trials and future development of radioprotectors. Cancer Clin Trials. 1980 Summer;3(2):165–173. [PubMed] [Google Scholar]
  17. Sigdestad C. P., Treacy S. H., Knapp L. A., Grdina D. J. The effect of 2-[(aminopropyl)amino] ethanethiol (WR-1065) on radiation induced DNA double strand damage and repair in V79 cells. Br J Cancer. 1987 May;55(5):477–482. doi: 10.1038/bjc.1987.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vogelstein B., Pardoll D. M., Coffey D. S. Supercoiled loops and eucaryotic DNA replicaton. Cell. 1980 Nov;22(1 Pt 1):79–85. doi: 10.1016/0092-8674(80)90156-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES