Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1989 Nov;60(5):678–684. doi: 10.1038/bjc.1989.339

Role of the aclacinomycin A--doxorubicin association in reversal of doxorubicin resistance in K562 tumour cells.

J M Millot 1, T D Rasoanaivo 1, H Morjani 1, M Manfait 1
PMCID: PMC2247305  PMID: 2803945

Abstract

Acquired resistance to anthracyclines is characterised by a lower sensitivity to these agents, associated with impaired accumulation of drug. We have examined the ability of aclacinomycin A (ACM) associated with doxorubicin (DOX), to increase intranuclear DOX concentrations and, consequently, to enhance cytotoxic effects against drug resistant cells in vitro. A recently developed microspectrofluorometric technique is used to measure intranuclear DOX concentrations in sensitive and DOX-resistant K562 cells treated with DOX and ACM. Fluorescence emission spectra are collected from a microvolume of single living cell nuclei. From both DOX and ACM model fluorescence spectra (free, DNA-bound and metabolites), the intranuclear spectral profile is analysed according to the amount of each component. This quantitative analysis determines intranuclear DOX concentrations with an error of 10%. Non-cytotoxic doses of ACM, in combination with DOX, increase cytotoxic activity of DOX against K562 resistant cells. When DOX-resistant cells are exposed simultaneously to ACM and DOX, significant increases in intranuclear DOX concentrations are found compared with the case of exposure to DOX alone. The measure of the intranuclear retention of DOX shows that ACM partly blocks the DOX efflux in resistant cell nuclei, resulting in enhanced accumulation of DOX. These data lead us to conclude that ACM-DOX association partly reverses the DOX resistance at clinically achievable concentrations.

Full text

PDF
678

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachur N. R., Gordon S. L., Gee M. V., Kon H. NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals. Proc Natl Acad Sci U S A. 1979 Feb;76(2):954–957. doi: 10.1073/pnas.76.2.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradley G., Juranka P. F., Ling V. Mechanism of multidrug resistance. Biochim Biophys Acta. 1988 Aug 3;948(1):87–128. doi: 10.1016/0304-419x(88)90006-6. [DOI] [PubMed] [Google Scholar]
  3. Chauffert B., Martin M., Hammann A., Michel M. F., Martin F. Amiodarone-induced enhancement of doxorubicin and 4'-deoxydoxorubicin cytotoxicity to rat colon cancer cells in vitro and in vivo. Cancer Res. 1986 Feb;46(2):825–830. [PubMed] [Google Scholar]
  4. Cornwell M. M., Gottesman M. M., Pastan I. H. Increased vinblastine binding to membrane vesicles from multidrug-resistant KB cells. J Biol Chem. 1986 Jun 15;261(17):7921–7928. [PubMed] [Google Scholar]
  5. Egorin M. J., Van Echo D., Fox B. M., Whitacre M., Bachur N. R. Plasma kinetics of aclacinomycin A and its major metabolites in man. Cancer Chemother Pharmacol. 1982;8(1):41–46. doi: 10.1007/BF00292870. [DOI] [PubMed] [Google Scholar]
  6. Friche E., Skovsgaard T., Nissen N. I. Effect of verapamil on daunorubicin accumulation in Ehrlich ascites tumor cells. Cancer Chemother Pharmacol. 1987;19(1):35–39. doi: 10.1007/BF00296252. [DOI] [PubMed] [Google Scholar]
  7. Fujimoto S., Inagaki J., Horikoshi N., Ogawa M. Combination chemotherapy with a new anthracycline glycoside, aclacinomycin-A, and active drugs for malignant lymphomas in P388 mouse leukemia system. Gan. 1979 Aug;70(4):411–420. [PubMed] [Google Scholar]
  8. Ganapathi R., Grabowski D., Rouse W., Riegler F. Differential effect of the calmodulin inhibitor trifluoperazine on cellular accumulation, retention, and cytotoxicity of anthracyclines in doxorubicin (adriamycin)-resistant P388 mouse leukemia cells. Cancer Res. 1984 Nov;44(11):5056–5061. [PubMed] [Google Scholar]
  9. Gigli M., Doglia S. M., Millot J. M., Valentini L., Manfait M. Quantitative study of doxorubicin in living cell nuclei by microspectrofluorometry. Biochim Biophys Acta. 1988 May 6;950(1):13–20. doi: 10.1016/0167-4781(88)90068-1. [DOI] [PubMed] [Google Scholar]
  10. Gigli M., Rasoanaivo T. W., Millot J. M., Jeannesson P., Rizzo V., Jardillier J. C., Arcamone F., Manfait M. Correlation between growth inhibition and intranuclear doxorubicin and 4'-deoxy-4'-iododoxorubicin quantitated in living K562 cells by microspectrofluorometry. Cancer Res. 1989 Feb 1;49(3):560–564. [PubMed] [Google Scholar]
  11. Kartner N., Riordan J. R., Ling V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science. 1983 Sep 23;221(4617):1285–1288. doi: 10.1126/science.6137059. [DOI] [PubMed] [Google Scholar]
  12. Kumai K., Kubota T., Ishibiki K., Abe O. Experimental and clinical studies on aclarubicin in the treatment of solid tumors. Biomed Pharmacother. 1984;38(7):332–337. [PubMed] [Google Scholar]
  13. Lane P., Vichi P., Bain D. L., Tritton T. R. Temperature dependence studies of adriamycin uptake and cytotoxicity. Cancer Res. 1987 Aug 1;47(15):4038–4042. [PubMed] [Google Scholar]
  14. Ling V., Kartner N., Sudo T., Siminovitch L., Riordan J. R. Multidrug-resistance phenotype in Chinese hamster ovary cells. Cancer Treat Rep. 1983 Oct;67(10):869–874. [PubMed] [Google Scholar]
  15. Lozzio C. B., Lozzio B. B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975 Mar;45(3):321–334. [PubMed] [Google Scholar]
  16. Majima H., Ohta K. Clinical studies of aclacinomycin A (ACM). Biomed Pharmacother. 1987;41(5):233–237. [PubMed] [Google Scholar]
  17. Manfait M., Alix A. J., Jeannesson P., Jardillier J. C., Theophanides T. Interaction of adriamycin with DNA as studied by resonance Raman spectroscopy. Nucleic Acids Res. 1982 Jun 25;10(12):3803–3816. doi: 10.1093/nar/10.12.3803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moore H. W. Bioactivation as a model for drug design bioreductive alkylation. Science. 1977 Aug 5;197(4303):527–532. doi: 10.1126/science.877572. [DOI] [PubMed] [Google Scholar]
  19. Ogasawara T., Masuda Y., Goto S., Mori S., Oki T. High performance liquid chromatographic determination of aclacinomycin a and its related compounds. II. Reverse phase HPLC determination of aclacinomycin A and its metabolites in biological fluids using fluorescence detection. J Antibiot (Tokyo) 1981 Jan;34(1):52–57. doi: 10.7164/antibiotics.34.52. [DOI] [PubMed] [Google Scholar]
  20. Ramu A., Glaubiger D., Fuks Z. Reversal of acquired resistance to doxorubicin in P388 murine leukemia cells by tamoxifen and other triparanol analogues. Cancer Res. 1984 Oct;44(10):4392–4395. [PubMed] [Google Scholar]
  21. Riordan J. R., Deuchars K., Kartner N., Alon N., Trent J., Ling V. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. 1985 Aug 29-Sep 4Nature. 316(6031):817–819. doi: 10.1038/316817a0. [DOI] [PubMed] [Google Scholar]
  22. Seeber S., Loth H., Crooke S. T. Comparative nuclear and cellular incorporation of daunorubicin, doxorubicin, carminomycin, marcellomycin, aclacinomycin A and AD 32 in daunorubicin-sensitive and -resistant Ehrlich ascites in vitro. J Cancer Res Clin Oncol. 1980;98(2):109–118. doi: 10.1007/BF00405955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Steel G. G., Peckham M. J. Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys. 1979 Jan;5(1):85–91. doi: 10.1016/0360-3016(79)90044-0. [DOI] [PubMed] [Google Scholar]
  24. Sugimoto Y., Tsuruo T. DNA-mediated transfer and cloning of a human multidrug-resistant gene of adriamycin-resistant myelogenous leukemia K562. Cancer Res. 1987 May 15;47(10):2620–2625. [PubMed] [Google Scholar]
  25. Tapiero H., Boulé D., Trincal G., Fourcade A., Lampidis T. J. Potentiation of adriamycin accumulation and effectiveness in adriamycin-resistant cells by aclacinomycin A. Leuk Res. 1988;12(5):411–418. doi: 10.1016/0145-2126(88)90060-4. [DOI] [PubMed] [Google Scholar]
  26. Tsuruo T., Iida-Saito H., Kawabata H., Oh-hara T., Hamada H., Utakoji T. Characteristics of resistance to adriamycin in human myelogenous leukemia K562 resistant to adriamycin and in isolated clones. Jpn J Cancer Res. 1986 Jul;77(7):682–692. [PubMed] [Google Scholar]
  27. Tsuruo T., Iida H., Kitatani Y., Yokota K., Tsukagoshi S., Sakurai Y. Effects of quinidine and related compounds on cytotoxicity and cellular accumulation of vincristine and adriamycin in drug-resistant tumor cells. Cancer Res. 1984 Oct;44(10):4303–4307. [PubMed] [Google Scholar]
  28. Tsuruo T., Iida H., Nojiri M., Tsukagoshi S., Sakurai Y. Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Res. 1983 Jun;43(6):2905–2910. [PubMed] [Google Scholar]
  29. Twentyman P. R. Modification of cytotoxic drug resistance by non-immuno-suppressive cyclosporins. Br J Cancer. 1988 Mar;57(3):254–258. doi: 10.1038/bjc.1988.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Umezawa K., Kunimoto S., Takeuchi T. Experimental studies of new anthracyclines: aclacinomycin, THP-adriamycin and ditrisarubicins. Biomed Pharmacother. 1987;41(5):206–213. [PubMed] [Google Scholar]
  31. Wadler S., Wiernik P. H. Partial reversal of doxorubicin resistance by forskolin and 1,9-dideoxyforskolin in murine sarcoma S180 variants. Cancer Res. 1988 Feb 1;48(3):539–543. [PubMed] [Google Scholar]
  32. Zunino F., Di Marco A., Zaccara A., Gambetta R. A. The interaction of daunorubicin and doxorubicin with DNA and chromatin. Biochim Biophys Acta. 1980 Apr 30;607(2):206–214. doi: 10.1016/0005-2787(80)90073-8. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES