Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Jul;135(1):18–28. doi: 10.1128/jb.135.1.18-28.1978

F'-plasmid transfer from Escherichia coli to Pseudomonas fluorescens.

M Mergeay, J Gerits
PMCID: PMC224756  PMID: 97267

Abstract

Various F' plasmids of Escherichia coli K-12 could be transferred into mutants of the soil strain 6.2, classified herein as a Pseudomonas fluorescens biotype IV. This strain was previously found to receive Flac plasmid (N. Datta and R.W. Hedges, J. Gen Microbiol. 70:453-460, 1972). ilv, leu, met, arg, and his auxotrophs were complemented by plasmids carrying isofunctional genes; trp mutants were not complemented or were very poorly complemented. The frequency of transfer was 10(-5). Subsequent transfer into other P. fluorescens recipients was of the same order of magnitude. Some transconjugants were unable to act as donors, and these did not lose the received information if subcultured on nonselective media. Use of F' plasmids helped to discriminate metabolic blocks in P. fluorescens. In particular, metA, metB, and argH mutants were so distinguished. In addition, F131 plasmid carrying the his operon and a supD mutation could partially relieve the auxotrophy of thr, ilv, and metA13 mutants, suggesting functional expression of E. coli tRNA in P. fluorescens. In P. fluorescens metA Rifr mutants carrying the F110 plasmid, which carried the E. coli metA gene and the E. coli rifs allele, sensitivity to rifampin was found to be dominant at least temporarily over resistance. This suggests interaction of E. coli and P. fluorescens subunits of RNA polymerase. his mutations were also complemented by composite P plasmids containing the his-nif region of Klebsiella pneumoniae (plasmids FN68 and RP41). nif expression could be detected by acetylene reduction in some his+ transconjugants. The frequency of transfer of these P plasmids was 5 X 10(-4).

Full text

PDF
18

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenbern R. A. Chromosomal mapping of Brucella abortus, strain 19. Can J Microbiol. 1973 Jan;19(1):109–112. doi: 10.1139/m73-016. [DOI] [PubMed] [Google Scholar]
  2. Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167. doi: 10.1128/br.40.1.116-167.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beringer J. E., Hopwood D. A. Chromosomal recombination and mapping in Rhizobium leguminosarum. Nature. 1976 Nov 18;264(5583):291–293. doi: 10.1038/264291a0. [DOI] [PubMed] [Google Scholar]
  4. Beringer J. E. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974 Sep;84(1):188–198. doi: 10.1099/00221287-84-1-188. [DOI] [PubMed] [Google Scholar]
  5. Cannon F. C., Dixon R. A., Postgate J. R. Derivation and properties of F-prime factors in Escherichia coli carrying nitrogen fixation genes from Klebsiella pneumoniae. J Gen Microbiol. 1976 Mar;93(1):111–125. doi: 10.1099/00221287-93-1-111. [DOI] [PubMed] [Google Scholar]
  6. Cannon F. C., Postgate J. R. Expression of Klebsiella nitrogen fixation genes (nif) in Azotobacter. Nature. 1976 Mar 18;260(5548):271–272. doi: 10.1038/260271a0. [DOI] [PubMed] [Google Scholar]
  7. Crawford I. P., Gunsalus I. C. Inducibility of tryptophan synthetase in Pseudomonas putida. Proc Natl Acad Sci U S A. 1966 Aug;56(2):717–724. doi: 10.1073/pnas.56.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Datta N., Hedges R. W. Host ranges of R factors. J Gen Microbiol. 1972 May;70(3):453–460. doi: 10.1099/00221287-70-3-453. [DOI] [PubMed] [Google Scholar]
  10. Datta N., Hedges R. W., Shaw E. J., Sykes R. B., Richmond M. H. Properties of an R factor from Pseudomonas aeruginosa. J Bacteriol. 1971 Dec;108(3):1244–1249. doi: 10.1128/jb.108.3.1244-1249.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Ley J., Rassel A. DNA base composition, flagellation and taxonomy of the genus Rhizobium. J Gen Microbiol. 1965 Oct;41(1):85–91. doi: 10.1099/00221287-41-1-85. [DOI] [PubMed] [Google Scholar]
  12. Dixon R., Cannon F., Kondorosi A. Construction of a P plasmid carrying nitrogen fixation genes from Klebsiella pneumoniae. Nature. 1976 Mar 18;260(5548):268–271. doi: 10.1038/260268a0. [DOI] [PubMed] [Google Scholar]
  13. Gunsalus C., Gunsalus C. F., Chakrabarty A. M., Sikes S., Crawford I. P. Fine structure mapping of the tryptophan genes in Pseudomonas putida. Genetics. 1968 Nov;60(3):419–435. doi: 10.1093/genetics/60.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hedges R. W., Jacob A. E., Crawford I. P. Wide ranging plasmid bearing the Pseudomonas aeruginosa tryptophan synthase genes. Nature. 1977 May 19;267(5608):283–284. doi: 10.1038/267283a0. [DOI] [PubMed] [Google Scholar]
  15. Lacy G. H., Leary J. V. Plasmid-mediated transmission of chromosomal genes in Pseudomonas glycinea. Genet Res. 1976 Jun;27(3):363–368. doi: 10.1017/s001667230001658x. [DOI] [PubMed] [Google Scholar]
  16. Low K. B. Escherichia coli K-12 F-prime factors, old and new. Bacteriol Rev. 1972 Dec;36(4):587–607. doi: 10.1128/br.36.4.587-607.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mandel M. Deoxyribonucleic acid base composition in the genus Pseudomonas. J Gen Microbiol. 1966 May;43(2):273–292. doi: 10.1099/00221287-43-2-273. [DOI] [PubMed] [Google Scholar]
  18. Meade H. M., Signer E. R. Genetic mapping of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1977 May;74(5):2076–2078. doi: 10.1073/pnas.74.5.2076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mergeay M., Tshitenge G., Jacquemin J. M., Gerits J., Ledoux L. Transfert génétique d'Escherichia coli K12 à Rhizobium lupini 6.2. Arch Int Physiol Biochim. 1973 Oct;81(4):805–805. [PubMed] [Google Scholar]
  20. Mojica-A T., Gerits J. Shortening of Escherichia coli F-prime F110 by deletion of plasmid-borne chromosomal DNA. Arch Int Physiol Biochim. 1975 Dec;83(5):982–983. [PubMed] [Google Scholar]
  21. Nagahari K., Sano Y., Sakaguchi K. Derepression of E. coli trp operon on interfamilial transfer. Nature. 1977 Apr 21;266(5604):745–746. doi: 10.1038/266745a0. [DOI] [PubMed] [Google Scholar]
  22. Nagahari K., Tanaka T., Hishinuma F., Kuroda M., Sakaguchi K. Control of tryptophan synthetase amplified by varying the numbers of composite plasmids in Escherichia coli cells. Gene. 1977 Mar;1(2):141–152. doi: 10.1016/0378-1119(77)90025-7. [DOI] [PubMed] [Google Scholar]
  23. Olsen R. H., Shipley P. Host range and properties of the Pseudomonas aeruginosa R factor R1822. J Bacteriol. 1973 Feb;113(2):772–780. doi: 10.1128/jb.113.2.772-780.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Postgate J. R., Krishnapillai V. Expression of Klebsiella nif and his genes in Salmonella typhimurium. J Gen Microbiol. 1977 Feb;98(2):379–385. doi: 10.1099/00221287-98-2-379. [DOI] [PubMed] [Google Scholar]
  25. Proctor A. R., Crawford I. P. Autogenous regulation of the inducible tryptophan synthase of Pseudomonas putida. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1249–1253. doi: 10.1073/pnas.72.4.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Proctor A. R., Crawford I. P. Evidence for autogenous regulation of Pseudomonas putida tryptophan synthase. J Bacteriol. 1976 Apr;126(1):547–549. doi: 10.1128/jb.126.1.547-549.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rigaud J. Contribution a l'étude d'un milieu synthétique pour la croissance de Rhizobium. Ann Inst Pasteur (Paris) 1965 Sep;109(3 Suppl):272–279. [PubMed] [Google Scholar]
  28. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  29. Streicher S. L., Gurney E. G., Valentine R. C. The nitrogen fixation genes. Nature. 1972 Oct 27;239(5374):495–499. doi: 10.1038/239495a0. [DOI] [PubMed] [Google Scholar]
  30. Towner K. J., Vivian A. RP4-mediated conjugation in Acinetobacter calcoaceticus. J Gen Microbiol. 1976 Apr;93(2):355–360. doi: 10.1099/00221287-93-2-355. [DOI] [PubMed] [Google Scholar]
  31. Tubb R. S. Glutamine synthetase and ammonium regulation of nitrogenase synthesis in Klebsiella. Nature. 1974 Oct 11;251(5475):481–485. doi: 10.1038/251481a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES