Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1968 Mar;59(3):923–929. doi: 10.1073/pnas.59.3.923

T2 DNA-dependent synthesis of bacteriophage-related proteins.

J E Celis, T W Conway
PMCID: PMC224781  PMID: 5238673

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BONNER J., HUANG R. C., GILDEN R. V. CHROMOSOMALLY DIRECTED PROTEIN SYNTHESIS. Proc Natl Acad Sci U S A. 1963 Nov;50:893–900. doi: 10.1073/pnas.50.5.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brawerman G., Eisenstadt J. M. A factor from Escherichia coli concerned with the stimulation of cell-free polypeptide synthesis by exogenous ribonucleic acid. II. Characteristics of the reaction promoted by the stimulation factor. Biochemistry. 1966 Sep;5(9):2784–2789. doi: 10.1021/bi00873a002. [DOI] [PubMed] [Google Scholar]
  4. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  5. DOERFLER W., ZILLIG W., FUCHS E., ALBERS M. [Studies on the biosyhthesis of proteins. V. The function of nucleic acids in the incorporation of amino acids into proteins in a cell free system in Esherichia coli]. Hoppe Seylers Z Physiol Chem. 1962 Dec 15;330:96–123. doi: 10.1515/bchm2.1962.330.1.96. [DOI] [PubMed] [Google Scholar]
  6. DeVries J. K., Zubay G. DNA-directed peptide synthesis. II. The synthesis of the alpha-fragment of the enzyme beta-galactosidase. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1010–1012. doi: 10.1073/pnas.57.4.1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FLAKS J. G., COHEN S. S. The enzymic synthesis of 5-hydroxymethyldeoxycytidylic acid. Biochim Biophys Acta. 1957 Sep;25(3):667–668. doi: 10.1016/0006-3002(57)90553-x. [DOI] [PubMed] [Google Scholar]
  8. FURTH J. J., KAHAN F. M., HURWITZ J. Stimulation by RNA polymerase of amino acid incorporation into proteins by extracts of Escherichia coli. Biochem Biophys Res Commun. 1962 Oct 31;9:337–343. doi: 10.1016/0006-291x(62)90051-7. [DOI] [PubMed] [Google Scholar]
  9. Fairbanks G., Jr, Levinthal C., Reeder R. H. Analysis of C14-labeled proteins by disc electrophoresis. Biochem Biophys Res Commun. 1965 Aug 16;20(4):393–399. doi: 10.1016/0006-291x(65)90589-9. [DOI] [PubMed] [Google Scholar]
  10. Geiduschek E. P., Snyder L., Colvill A. J., Sarnat M. Selective synthesis of T-even bacteriophage early messenger in vitro. J Mol Biol. 1966 Aug;19(2):541–547. doi: 10.1016/s0022-2836(66)80021-9. [DOI] [PubMed] [Google Scholar]
  11. HERRIOTT R. M., BARLOW J. L. Preparation, purification, and properties of E. coli virus T2. J Gen Physiol. 1952 May;36(1):17–28. doi: 10.1085/jgp.36.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KAJI A., KAJI H., NOVELLI G. D. SOLUBLE AMINO ACID-INCORPORATING SYSTEM. I. PREPARATION OF THE SYSTEM AND NATURE OF THE REACTION. J Biol Chem. 1965 Mar;240:1185–1191. [PubMed] [Google Scholar]
  13. KATZ A. M., DREYER W. J., ANFINSEN C. B. Peptide separation by two-dimensional chromatography and electrophoresis. J Biol Chem. 1959 Nov;234:2897–2900. [PubMed] [Google Scholar]
  14. Kornberg A., Zimmerman S. B., Kornberg S. R., Josse J. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. INFLUENCE OF BACTERIOPHAGE T2 ON THE SYNTHETIC PATHWAY IN HOST CELLS. Proc Natl Acad Sci U S A. 1959 Jun;45(6):772–785. doi: 10.1073/pnas.45.6.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MATTHAEI J. H., NIRENBERG M. W. Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1580–1588. doi: 10.1073/pnas.47.10.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. OKAZAKI T., KORNBERG A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. XV. PURIFICATION AND PROPERTIES OF A POLYMERASE FROM BACILLUS SUBTILIS. J Biol Chem. 1964 Jan;239:259–268. [PubMed] [Google Scholar]
  17. Revel M., Gros F. A factor from E. coli required for the translation of natural messenger RNA. Biochem Biophys Res Commun. 1966 Oct 5;25(1):124–132. doi: 10.1016/0006-291x(66)90649-8. [DOI] [PubMed] [Google Scholar]
  18. Stanley W. M., Jr, Salas M., Wahba A. J., Ochoa S. Translation of the genetic message: factors involved in the initiation of protein synthesis. Proc Natl Acad Sci U S A. 1966 Jul;56(1):290–295. doi: 10.1073/pnas.56.1.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WATANABE I. The effect of ultraviolet light on the production of bacterial virus protein. J Gen Physiol. 1957 Mar 20;40(4):521–531. doi: 10.1085/jgp.40.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. WOOD W. B., BERG P. The effect of enzymatically synthesized ribonucleic acid on amino acid incorporation by a soluble protein-ribosome system from Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15;48:94–104. doi: 10.1073/pnas.48.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES