Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Jul;135(1):178–189. doi: 10.1128/jb.135.1.178-189.1978

Evidence for the specific association of the chromosomal origin with outer membrane fractions isolated from Escherichia coli.

A A Nicolaidis, I B Holland
PMCID: PMC224803  PMID: 353029

Abstract

DNA-envelope complexes isolated from osmotically lysed spheroplasts of Escherichia coli contained 0.2 to 1% of the total cellular DNA after labeling with [3H]thymidine. Molecular weight determinations indicated that the amount of bound DNA was equivalent in most cases to a maximum of three binding sites per chromosome. Bound DNA from E. coli B/r was distributed approximately equally between inner and outer membrane components when envelopes were fractionated on sucrose equilibrium gradients. Outer membrane-DNA complexes, in particular, fraction H1, with a density of 1.24 g/cm3, were quite stable against shearing and against Sarkosyl NL97. In the case of E. coli B/r, H1-DNA was also relatively resistant to deoxyribonuclease. Inner membrane-DNA complexes, in contrast, were quite labile and readily dissociated to release free DNA. The outer membrane fractions did not appear to contain replication fork DNA, but small amounts may have been present in the inner membrane complexes. A two- to eightfold enrichment for chromosomal origin DNA in the envelope was obtained when cultures of E. coli K-12, synchronized for DNA replication, were pulse labeled at different times in the replication cycle. This enrichment was found invariably in the outer membrane fractions. However, the data do not exclude the possibility that this DNA is bound to regions of adhesion between inner and outer membranes which sediment with a density indistinguishable from that of the outer membrane.

Full text

PDF
178

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe M., Brown C., Hendrickson W. G., Boyd D. H., Clifford P., Cote R. H., Schaechter M. Release of Escherichia coli DNA from membrane complexes by single-strand endonucleases. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2756–2760. doi: 10.1073/pnas.74.7.2756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ames G. F. Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. Membrane, soluble, and periplasmic fractions. J Biol Chem. 1974 Jan 25;249(2):634–644. [PubMed] [Google Scholar]
  3. Ballesta J. P., Cundliffe E., Daniels M. J., Silverstein J. L., Susskind M. M., Schaechter M. Some unique properties of the deoxyribonucleic acid-bearing portion of the bacterial membrane. J Bacteriol. 1972 Oct;112(1):195–199. doi: 10.1128/jb.112.1.195-199.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bayer M. E. Adsorption of bacteriophages to adhesions between wall and membrane of Escherichia coli. J Virol. 1968 Apr;2(4):346–356. doi: 10.1128/jvi.2.4.346-356.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyd A., Holland I. B. Protein d, an iron-transport protein induced by filtration of cultures of Escherichia coli. FEBS Lett. 1977 Apr 1;76(1):20–24. doi: 10.1016/0014-5793(77)80112-9. [DOI] [PubMed] [Google Scholar]
  6. Churchward G. G., Holland I. B. Envelope synthesis during the cell cycle in Escherichia coli B/r. J Mol Biol. 1976 Aug 5;105(2):245–261. doi: 10.1016/0022-2836(76)90110-8. [DOI] [PubMed] [Google Scholar]
  7. Cohen G., Eisenberg H. Deoxyribonucleate solutions: sedimentation in a density gradient, partial specific volumes, density and refractive index increments, and preferential interactions. Biopolymers. 1968;6(8):1077–1100. doi: 10.1002/bip.1968.360060805. [DOI] [PubMed] [Google Scholar]
  8. Doyle R. J., Streips U. N., Fan V. S., Brown W. C., Mobley H., Mansfield J. M. Cell wall protein in Bacillus subtilis. J Bacteriol. 1977 Jan;129(1):547–549. doi: 10.1128/jb.129.1.547-549.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dworsky P., Schaechter M. Effect of rifampin on the structure and membrane attachment of the nucleoid of Escherichia coli. J Bacteriol. 1973 Dec;116(3):1364–1374. doi: 10.1128/jb.116.3.1364-1374.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Earhart C. F., Tremblay G. Y., Daniels M. J., Schaechter M. DNA replication studied by a new method for the isolation of cell membrane-DNA complexes. Cold Spring Harb Symp Quant Biol. 1968;33:707–710. doi: 10.1101/sqb.1968.033.01.079. [DOI] [PubMed] [Google Scholar]
  11. Fielding P., Fox C. F. Evidence for stable attachment of DNA to membrane at the replication origin of Escherichia coli. Biochem Biophys Res Commun. 1970 Oct 9;41(1):157–162. doi: 10.1016/0006-291x(70)90482-1. [DOI] [PubMed] [Google Scholar]
  12. Filip C., Fletcher G., Wulff J. L., Earhart C. F. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol. 1973 Sep;115(3):717–722. doi: 10.1128/jb.115.3.717-722.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freifelder D. Molecular weights of coliphages and coliphage DNA. IV. Molecular weights of DNA from bacteriophages T4, T5 and T7 and the general problem of determination of M. J Mol Biol. 1970 Dec 28;54(3):567–577. doi: 10.1016/0022-2836(70)90127-0. [DOI] [PubMed] [Google Scholar]
  14. Gomez-Eichelmann M. C., Bastarrachea F. Progress in the resolution of the cytoplasmic membrane DNA initiation complex of Escherichia coli. Biochim Biophys Acta. 1975 Oct 15;407(3):273–282. doi: 10.1016/0005-2787(75)90094-5. [DOI] [PubMed] [Google Scholar]
  15. Gudas L. J., James R., Paradee A. B. Evidence of the involvement of an outer membrane protein in DNA initiation. J Biol Chem. 1976 Jun 10;251(11):3470–3479. [PubMed] [Google Scholar]
  16. HANAWALT P. C., RAY D. S. ISOLATION OF THE GROWING POINT IN THE BACTERIAL CHROMOSOME. Proc Natl Acad Sci U S A. 1964 Jul;52:125–132. doi: 10.1073/pnas.52.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hancock R. E., Hantke K., Braun V. Iron transport of Escherichia coli K-12: involvement of the colicin B receptor and of a citrate-inducible protein. J Bacteriol. 1976 Sep;127(3):1370–1375. doi: 10.1128/jb.127.3.1370-1375.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heidrich H. G., Olsen W. L. Deoxyribonucleic acid-envelope complexes from Escherichia coli. A complex-specific protein and its possible function for the stability of the complex. J Cell Biol. 1975 Nov;67(2PT1):444–460. doi: 10.1083/jcb.67.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Helmstetter C. E. Sequence of bacterial reproduction. Annu Rev Microbiol. 1969;23:223–238. doi: 10.1146/annurev.mi.23.100169.001255. [DOI] [PubMed] [Google Scholar]
  20. Ivarie R. D., Pène J. J. Association of many regions of the Bacillus subtilis chromosome with the cell membrane. J Bacteriol. 1973 May;114(2):571–576. doi: 10.1128/jb.114.2.571-576.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Iyer R., Darby V., Holland I. B. Changes in membrane proteins of Escherichia coli K12 mediated by bacteriophage IKe-specific plasmids. Biochim Biophys Acta. 1976 Dec 22;453(2):311–318. doi: 10.1016/0005-2795(76)90126-4. [DOI] [PubMed] [Google Scholar]
  22. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  23. Leibowitz P. J., Schaechter M. The attachment of the bacterial chromosome to the cell membrane. Int Rev Cytol. 1975;41:1–28. doi: 10.1016/s0074-7696(08)60964-x. [DOI] [PubMed] [Google Scholar]
  24. Marsh R. C., Worcel A. A DNA fragment containing the origin of replication of the Escherichia coli chromosome. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2720–2724. doi: 10.1073/pnas.74.7.2720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McDonell M. W., Simon M. N., Studier F. W. Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J Mol Biol. 1977 Feb 15;110(1):119–146. doi: 10.1016/s0022-2836(77)80102-2. [DOI] [PubMed] [Google Scholar]
  26. Olsen W. L., Heidrich H. G., Hannig K., Hofschneider P. H. Deoxyribonucleic acid-envelope complexes isolated from Escherichia coli by free-flow electrophoresis: biochemical and electron microscope characterization. J Bacteriol. 1974 May;118(2):646–653. doi: 10.1128/jb.118.2.646-653.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Osborn M. J., Gander J. E., Parisi E., Carson J. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem. 1972 Jun 25;247(12):3962–3972. [PubMed] [Google Scholar]
  28. Parker D. L., Glaser D. A. Chromosomal sites of DNA-membrane attachment in Escherichia coli. J Mol Biol. 1974 Aug 5;87(2):153–168. doi: 10.1016/0022-2836(74)90140-5. [DOI] [PubMed] [Google Scholar]
  29. Portalier R., Worcel A. Association of the folded chromosome with the cell envelope of E. coli: characterization of the proteins at the DNA-membrane attachment site. Cell. 1976 Jun;8(2):245–255. doi: 10.1016/0092-8674(76)90008-8. [DOI] [PubMed] [Google Scholar]
  30. Pritchard R. H. Review lecture on the growth and form of a bacterial cell. Philos Trans R Soc Lond B Biol Sci. 1974 Feb 21;267(886):303–336. doi: 10.1098/rstb.1974.0003. [DOI] [PubMed] [Google Scholar]
  31. Pritchard R. H., Zaritsky A. Effect of thymine concentration on the replication velocity of DNA in a thymineless mutant of Escherichia coli. Nature. 1970 Apr 11;226(5241):126–131. doi: 10.1038/226126a0. [DOI] [PubMed] [Google Scholar]
  32. RYTER A., JACOB F. ETUDE AU MICROSCOPE 'ELECTRONIQUE DE LA LIAISON ENTRE NOYAU ET M'ESOSOME CHEZ BACILLUS SUBTILIS. Ann Inst Pasteur (Paris) 1964 Sep;107:384–400. [PubMed] [Google Scholar]
  33. Ron E. Z., Rozenhak S., Grossman N. Synchronization of cell division in Escherichia coli by amino acid starvation: strain specificity. J Bacteriol. 1975 Jul;123(1):374–376. doi: 10.1128/jb.123.1.374-376.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rosenberg B. H., Cavalieri L. F. Shear sensitivity of the E. coli genome: multiple membrane attachment points of the E. coli DNA. Cold Spring Harb Symp Quant Biol. 1968;33:65–72. doi: 10.1101/sqb.1968.033.01.012. [DOI] [PubMed] [Google Scholar]
  35. Ryter A., Jacob F. Etude morphologique de la liaison du noyau à la membrane chez E. coli et chez les protoplastes de B. subtilis. Ann Inst Pasteur (Paris) 1966 Jun;110(6):801–812. [PubMed] [Google Scholar]
  36. Silberstein S., Inouye M. The effects of lysozyme on DNA--membrane association in Escherichia coli. Biochim Biophys Acta. 1974 Oct 11;366(2):149–158. [PubMed] [Google Scholar]
  37. Smith D. W., Hanawalt P. C. Properties of the growing point region in the bacterial chromosome. Biochim Biophys Acta. 1967 Dec 19;149(2):519–531. doi: 10.1016/0005-2787(67)90180-3. [DOI] [PubMed] [Google Scholar]
  38. Strätling W., Knippers R. Properties of the DNA synthesizing activity in DNA-membrane complexes from bacterial cell extracts. Eur J Biochem. 1971 Jun 11;20(3):330–339. doi: 10.1111/j.1432-1033.1971.tb01398.x. [DOI] [PubMed] [Google Scholar]
  39. Sueoka N., Quinn W. G. Membrane attachment of the chromosome replication origin in Bacillus subtilis. Cold Spring Harb Symp Quant Biol. 1968;33:695–705. doi: 10.1101/sqb.1968.033.01.078. [DOI] [PubMed] [Google Scholar]
  40. VAN ITERSON W. Some features of a remarkable organelle in Bacillus subtilis. J Biophys Biochem Cytol. 1961 Jan;9:183–192. doi: 10.1083/jcb.9.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yamaguchi K., Yoshikawa H. Association of the replication terminus of the Bacillus subtilis chromosome to the cell membrane. J Bacteriol. 1975 Nov;124(2):1030–1033. doi: 10.1128/jb.124.2.1030-1033.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES