Abstract
Alcohol-oxidizing enzymes of the facultative methylotroph PAR were investigated after growth of the bacteria on methanol and ethanol. During methanol growth only a phenazine methosulfate-linked alcohol dehydrogenase was detected. This enzyme had broad specificity for primary alcohols and was also capable of oxidation of secondary alcohols. It had a molecular weight of 112,000, was composed of two subunits of equal molecular weight, and showed an absolute requirement for ammonium ion for activation. During ethanol growth this enzyme was absent and was replaced by a typical nicotinamide adenine dinucleotide-linked alcohol dehydrogenase of molecular weight 150,000. The latter enzyme also had broad specificity but could not oxidize methanol. This enzyme was not found during methanol growth. These data show that the organism has two distinctly separate mechanisms for oxidation of alcohols.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anthony C. The biochemistry of methylotrophic micro-organisms. Sci Prog. 1975 Summer;62(246):167–206. [PubMed] [Google Scholar]
- Anthony C., Zatman L. J. The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M 27. Biochem J. 1964 Sep;92(3):614–621. doi: 10.1042/bj0920614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anthony C., Zatman L. J. The microbial oxidation of methanol. Purification and properties of the alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J. 1967 Sep;104(3):953–959. doi: 10.1042/bj1040953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellion E., Hersh L. B. Methylamine metabolism in a pseudomonas species. Arch Biochem Biophys. 1972 Nov;153(1):368–374. doi: 10.1016/0003-9861(72)90457-2. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Dickinson F. M., Dalziel K. Substrate specificity and stereospecificity of alcohol dehydrogenases. Nature. 1967 Apr 1;214(5083):31–33. doi: 10.1038/214031a0. [DOI] [PubMed] [Google Scholar]
- Johnson P. A., Quayle J. R. Microbial growth on C-1 compounds. 6. Oxidation of methanol, formaldehyde and formate by methanol-grown Pseudomonas AM-1. Biochem J. 1964 Nov;93(2):281–290. doi: 10.1042/bj0930281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leadbetter E. R., Gottlieb J. A. On methylamine assimilation in a bacterium. Arch Mikrobiol. 1967;59(1):211–217. doi: 10.1007/BF00406334. [DOI] [PubMed] [Google Scholar]
- Mehta R. J. Pyridine nucleotide-linked oxidation of methanol in methanol-assimilating yeasts. J Bacteriol. 1975 Dec;124(3):1165–1167. doi: 10.1128/jb.124.3.1165-1167.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel R. N., Bose H. R., Mandy W. J., Hoare D. S. Physiological studies of methane- and methanol-oxidizing bacteria: comparison of a primary alcohol dehydrogenase from Methylococcus capsulatus (Texas strain) and Pseudomonas species M27. J Bacteriol. 1972 May;110(2):570–577. doi: 10.1128/jb.110.2.570-577.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel R. N., Felix A. Microbial oxidation of methane and methanol: crystallization and properties of methanol dehydrogenase from Methylosinus sporium. J Bacteriol. 1976 Oct;128(1):413–424. doi: 10.1128/jb.128.1.413-424.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel R. N., Hoare D. S. Physiological studies of methane and methanol-oxidizing bacteria: oxidation of C-1 compounds by Methylococcus capsulatus. J Bacteriol. 1971 Jul;107(1):187–192. doi: 10.1128/jb.107.1.187-192.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel R. N., Mandy W. J., Hoare D. S. Physiological studies of methane- and methanol-oxidizing bacteria: immunological comparison of a primary alcohol dehydrogenase from Methylococcus capsulatus and Pseudomonas sp. M27. J Bacteriol. 1973 Feb;113(2):937–945. doi: 10.1128/jb.113.2.937-945.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sahm H., Wagner F. Microbial assimilation of methanol. The ethanol- and methanol-oxidizing enzymes of the yeast Candida boidinii. Eur J Biochem. 1973 Jul 2;36(1):250–256. doi: 10.1111/j.1432-1033.1973.tb02907.x. [DOI] [PubMed] [Google Scholar]
- Shaw W. V., Tsai L., Stadtman E. R. The enzymatic synthesis of N-methylglutamic acid. J Biol Chem. 1966 Feb 25;241(4):935–945. [PubMed] [Google Scholar]
- Sperl G. T., Forrest H. S., Gibson D. T. Substrate specificity of the purified primary alcohol dehydrogenases from methanol-oxidizing bacteria. J Bacteriol. 1974 May;118(2):541–550. doi: 10.1128/jb.118.2.541-550.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wadzinski A. M., Ribbons D. W. Oxidation of C1 compounds by particulate fractions from Methylococcus capsulatus: properties of methanol oxidase and methanol dehydrogenase. J Bacteriol. 1975 Jun;122(3):1364–1374. doi: 10.1128/jb.122.3.1364-1374.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]