Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Jul;135(1):289–290. doi: 10.1128/jb.135.1.289-290.1978

NIC, a conjugative nicotine-nicotinate degradative plasmid in Pseudomonas convexa.

R Thacker, O Rørvig, P Kahlon, I C Gunsalus
PMCID: PMC224821  PMID: 670150

Abstract

The plasmid nature of genes specifying degradation of nicotine and nicotinate in Pseudomas convexa strain 1 (Pc1) is indicated by mitomycin curing and conjugational transfer to other strains. The NIC plasmid appears to be compatible with other metabolic plasmids in Pseudomonas putida.

Full text

PDF
289

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEHRMAN E. J., STANIER R. Y. The bacterial oxidation of nicotinic acid. J Biol Chem. 1957 Oct;228(2):923–945. [PubMed] [Google Scholar]
  2. Chakrabarty A. M. Plasmids in Pseudomonas. Annu Rev Genet. 1976;10:7–30. doi: 10.1146/annurev.ge.10.120176.000255. [DOI] [PubMed] [Google Scholar]
  3. Gauthier J. J., Rittenberg S. C. The metabolism of nicotinic acid. I. Purification and properties of 2,5-dihydroxypyridine oxygenase from Pseudomonas putida N-9. J Biol Chem. 1971 Jun 10;246(11):3737–3742. [PubMed] [Google Scholar]
  4. Gauthier J. J., Rittenberg S. C. The metabolism of nicotinic acid. II. 2,5-dihydroxypyridine oxidation, product formation, and oxygen 18 incorporation. J Biol Chem. 1971 Jun 10;246(11):3743–3748. [PubMed] [Google Scholar]
  5. Jones M. V. Cytochrome c linked nicotinic acid hydroxylase in Pseudomonas ovalis Chester. FEBS Lett. 1973 Jun 1;32(2):321–324. doi: 10.1016/0014-5793(73)80864-6. [DOI] [PubMed] [Google Scholar]
  6. Jones M. V., Hughes D. E. The oxidation of nicotinic acid by Pseudomonas ovalis Chester. The terminal oxidase. Biochem J. 1972 Sep;129(3):755–761. doi: 10.1042/bj1290755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Leidigh B. J., Wheelis M. L. The clustering on the Pseudomonas putida chromosome of genes specifying dissimilatory functions. J Mol Evol. 1973 Nov 27;2(4):235–242. doi: 10.1007/BF01654092. [DOI] [PubMed] [Google Scholar]
  8. Rheinwald J. G., Chakrabarty A. M., Gunsalus I. C. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc Natl Acad Sci U S A. 1973 Mar;70(3):885–889. doi: 10.1073/pnas.70.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Thacker R. P. Conversion of L-hydroxyproline to glutamate by extracts of strains of Pseudomonas convexa and Pseudomonas fluorescens. Arch Mikrobiol. 1969;64(3):235–238. doi: 10.1007/BF00425629. [DOI] [PubMed] [Google Scholar]
  10. WADA E. Microbial degradation of the tobacco alkaloids, and some related compounds. Arch Biochem Biophys. 1957 Nov;72(1):145–162. doi: 10.1016/0003-9861(57)90181-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES