Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1968 Apr;59(4):1288–1293. doi: 10.1073/pnas.59.4.1288

The biogenesis of mitochondria, VI. Biochemical basis of the resistance of Saccharomyces cerevisiae toward antibiotics which specifically inhibit mitochondrial protein synthesis.

A W Linnane, A J Lamb, C Christodoulou, H B Lukins
PMCID: PMC224865  PMID: 5240029

Full text

PDF
1288

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark-Walker G. D., Linnane A. W. In vivo differentiation of yeast cytoplasmic and mitochondrial protein synthesis with antibiotics. Biochem Biophys Res Commun. 1966 Oct 5;25(1):8–13. doi: 10.1016/0006-291x(66)90631-0. [DOI] [PubMed] [Google Scholar]
  2. Clark-Walker G. D., Linnane A. W. The biogenesis of mitochondria in Saccharomyces cerevisiae. A comparison between cytoplasmic respiratory-deficient mutant yeast and chlormaphenicol-inhibited wild type cells. J Cell Biol. 1967 Jul;34(1):1–14. doi: 10.1083/jcb.34.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fukuhara H. Informational role of mitochondrial DNA studied by hybridization with different classes of RNA in yeast. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1065–1072. doi: 10.1073/pnas.58.3.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Linnane A. W., Saunders G. W., Gingold E. B., Lukins H. B. The biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1968 Mar;59(3):903–910. doi: 10.1073/pnas.59.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. MONASTERO F., MEANS J. A., GRENFELL T. C., HEDGER F. H. Terramycin; chemical methods of assay and identification. J Am Pharm Assoc Am Pharm Assoc. 1951 May;40(5):241–245. doi: 10.1002/jps.3030400507. [DOI] [PubMed] [Google Scholar]
  6. Rogers P. J., Preston B. N., Titchener E. B., Linnane A. W. Differences between the sedimentation characteristics of the ribonucleic acids prepared from yeast cytoplasmic ribosomes and mitochondria. Biochem Biophys Res Commun. 1967 May 5;27(3):405–411. doi: 10.1016/s0006-291x(67)80114-1. [DOI] [PubMed] [Google Scholar]
  7. Suyama Y. The origins of mitochondrial ribonucleic acids in Tetrahymena pyriformis. Biochemistry. 1967 Sep;6(9):2829–2839. doi: 10.1021/bi00861a025. [DOI] [PubMed] [Google Scholar]
  8. Taubman S. B., Jones N. R., Young F. E., Corcoran J. W. Sensitivity and resistance to erythromycin in Bacillus subtilis 168: the ribosomal binding of erythromycin and chloramphenicol. Biochim Biophys Acta. 1966 Aug 17;123(2):438–440. doi: 10.1016/0005-2787(66)90301-7. [DOI] [PubMed] [Google Scholar]
  9. WOLFE A. D., HAHN F. E. MODE OF ACTION OF CHLORAMPHENICOL. IX. EFFECTS OF CHLORAMPHENICOL UPON A RIBOSOMAL AMINO ACID POLYMERIZATION SYSTEM AND ITS BINDING TO BACTERIAL RIBOSOME. Biochim Biophys Acta. 1965 Jan 11;95:146–155. doi: 10.1016/0005-2787(65)90219-4. [DOI] [PubMed] [Google Scholar]
  10. Wilkie D., Saunders G., Linnane A. W. Inhibition of respiratory enzyme synthesis in yeast by chloramphenicol: relationship between chloramphenicol tolerance and resistance to other antibacterial antibiotics. Genet Res. 1967 Oct;10(2):199–203. doi: 10.1017/s0016672300010934. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES