Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1968 Aug;60(4):1379–1382. doi: 10.1073/pnas.60.4.1379

Quantitative aspects of the origin of pentose in Escherichia coli.

R Caprioli, D Rittenberg
PMCID: PMC224929  PMID: 4877270

Full text

PDF
1379

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COHEN S. S., RAFF R. Adaptive enzymes in the estimation of gluconate D-arabinose, and D-ribose. J Biol Chem. 1951 Feb;188(2):501–508. [PubMed] [Google Scholar]
  2. Dekker C. A. Separation of nucleoside mixtures on Dowex-1 (OH-). J Am Chem Soc. 1965 Sep 5;87(17):4027–4029. doi: 10.1021/ja01095a073. [DOI] [PubMed] [Google Scholar]
  3. HIATT H. H. Studies of ribose metabolism. I. The pathway of nucleic acid ribose synthesis in a human carcinoma cell in tissue culture. J Clin Invest. 1957 Oct;36(10):1408–1415. doi: 10.1172/JCI103540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hanessian S., DeJongh D. C., McCloskey J. A. Further evidence on the structure of cordycepin. Biochim Biophys Acta. 1966 Apr 25;117(2):480–482. doi: 10.1016/0304-4165(66)90101-2. [DOI] [PubMed] [Google Scholar]
  5. KATZ J., WOOD H. G. The use of glucose-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem. 1960 Aug;235:2165–2177. [PubMed] [Google Scholar]
  6. MARKS P. A., FEIGELSON P. The biosynthesis of nucleic acid ribose and of glycogen glucose in the rat. J Biol Chem. 1957 Jun;226(2):1001–1010. [PubMed] [Google Scholar]
  7. Model P., Rittenberg D. Measurement of the activity of the hexose monophosphate pathway of glucose metabolism with the use of [18O]glucose. Variations in its activity in Escherichia coli with growth conditions. Biochemistry. 1967 Jan;6(1):69–80. doi: 10.1021/bi00853a013. [DOI] [PubMed] [Google Scholar]
  8. Nicholson J. F., Ponticorvo L., Rittenberg D. Labeling of ribonucleic acid from Escherichia coli grown on [1-18-O]glucose. Biochim Biophys Acta. 1965 Nov 8;108(3):519–520. doi: 10.1016/0005-2787(65)90047-x. [DOI] [PubMed] [Google Scholar]
  9. SZYNKIEWICZ Z. M., SABLE H. Z., PFLUEGER E. M. Biosynthesis of pentoses in Escherichia coli. Factors involved in selection of biosynthetic pathways. J Bacteriol. 1961 Jun;81:837–844. doi: 10.1128/jb.81.6.837-844.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. WANG C. H., STERN I., GILMOUR C. M., KLUNGSOYR S., REED D. J., BIALY J. J., CHRISTENSEN B. E., CHELDELIN V. H. Comparative study of glucose catabolism by the radiorespirometric method. J Bacteriol. 1958 Aug;76(2):207–216. doi: 10.1128/jb.76.2.207-216.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. WOOD H. G., KATZ J., LANDAU B. R. ESTIMATION OF PATHWAYS OF CARBOHYDRATE METABOLISM. Biochem Z. 1963;338:809–847. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES