Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1968 Oct;61(2):469–476. doi: 10.1073/pnas.61.2.469

Isolation of deoxyribonucleic acid from the yolk platelets of Xenopus laevis oöcyte.

E Baltus, J Hanocq-Quertier, J Brachet
PMCID: PMC225182  PMID: 5245981

Full text

PDF
469

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALTUS E., BRACHET J. [The determination of desoxyribonucleic acid in batrachian eggs]. Biochim Biophys Acta. 1962 Aug 20;61:157–163. [PubMed] [Google Scholar]
  2. BRACHET J., FICQ A. BINDING SITES OF 14C-ACTINOMYCIN IN AMPHIBIAN OVOCYTES AND AN AUTORADIOGRAPHY TECHNIQUE FOR THE DETECTION OF CYTOPLASMIC DNA. Exp Cell Res. 1965 Apr;38:153–159. doi: 10.1016/0014-4827(65)90437-4. [DOI] [PubMed] [Google Scholar]
  3. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CHAMBERLIN M., BERG P. Deoxyribo ucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15;48:81–94. doi: 10.1073/pnas.48.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dawid I. B. Deoxyribonucleic acid in amphibian eggs. J Mol Biol. 1965 Jul;12(3):581–599. doi: 10.1016/s0022-2836(65)80313-8. [DOI] [PubMed] [Google Scholar]
  6. Dawid I. B. Evidence for the mitochondrial origin of frog egg cytoplasmic DNA. Proc Natl Acad Sci U S A. 1966 Jul;56(1):269–276. doi: 10.1073/pnas.56.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haggis A. J. Deoxyribonucleic acid in germinal vesicles of oocytes of Rana pipiens. Science. 1966 Nov 4;154(3749):670–671. doi: 10.1126/science.154.3749.670. [DOI] [PubMed] [Google Scholar]
  8. Hanocq-Quertier J., Baltus E., Ficq A., Brachet J. Studies on the DNA of Xenopus laevis oocytes. J Embryol Exp Morphol. 1968 Apr;19(2):273–282. [PubMed] [Google Scholar]
  9. Kirby K. S., Cook E. A. Isolation of deoxyribonucleic acid from mammalian tissues. Biochem J. 1967 Jul;104(1):254–257. doi: 10.1042/bj1040254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rudack D., Wallace R. A. On the site of phosvitin synthesis in Xenopus laevis. Biochim Biophys Acta. 1968 Jan 29;155(1):299–301. doi: 10.1016/0005-2787(68)90361-4. [DOI] [PubMed] [Google Scholar]
  11. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  12. SUEOKA N., MARMUR J., DOTY P., 2nd Dependence of the density of deoxyribonucleic acids on guanine-cytosine content. Nature. 1959 May 23;183(4673):1429–1431. doi: 10.1038/1831429a0. [DOI] [PubMed] [Google Scholar]
  13. WALLACE R. A., KARASAKI S. Studies on amphibian yolk. 2. The isolation of yolk platelets from the eggs of Rana pipiens. J Cell Biol. 1963 Jul;18:153–166. doi: 10.1083/jcb.18.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yolles R. S., Freeman G. Studies on the deproteinization of DNA. Biochim Biophys Acta. 1967 May 30;138(3):506–512. doi: 10.1016/0005-2787(67)90547-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES