Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1968 Dec;61(4):1349–1355. doi: 10.1073/pnas.61.4.1349

The initiation of polyphenylalanine synthesis with N-acetylphenylalanyl-tRNA.

E B Klem, T Nakamoto
PMCID: PMC225262  PMID: 4884683

Full text

PDF
1349

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allende J. E., Weissbach H. GTP interaction with a protein synthesis initiation factor preparation from Escherichia coli. Biochem Biophys Res Commun. 1967 Jul 10;28(1):82–88. doi: 10.1016/0006-291x(67)90410-x. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. S., Bretscher M. S., Clark B. F., Marcker K. A. A GTP requirement for binding initiator tRNA to ribosomes. Nature. 1967 Jul 29;215(5100):490–492. doi: 10.1038/215490a0. [DOI] [PubMed] [Google Scholar]
  3. Clark B. F., Marcker K. A. N-formyl-methionyl-sigma-ribonucleic acid and chain initiation in protein biosynthesis. Polypeptide synthesis directed by a bacteriophage ribonucleic acid in a cell-free system. Nature. 1966 Jul 23;211(5047):378–380. doi: 10.1038/211378a0. [DOI] [PubMed] [Google Scholar]
  4. DUBIN D. T., ROSENTHAL S. M. The acetylation of polyamines in Escherichia coli. J Biol Chem. 1960 Mar;235:776–782. [PubMed] [Google Scholar]
  5. Economou A. E., Nakamoto T. Further studies on the initiation of protein synthesis with N-formylmethionine in E. coli extracts. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1033–1039. doi: 10.1073/pnas.58.3.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisenstadt J. M., Brawerman G. The role of the native subribosomal particles of Escherichia coli in polypeptide chain initiation. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1560–1565. doi: 10.1073/pnas.58.4.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guthrie C., Nomura M. Initiation of protein synthesis: a critical test of the 30S subunit model. Nature. 1968 Jul 20;219(5151):232–235. doi: 10.1038/219232a0. [DOI] [PubMed] [Google Scholar]
  8. Haenni A. L., Chapeville F. The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis. Biochim Biophys Acta. 1966 Jan 18;114(1):135–148. doi: 10.1016/0005-2787(66)90261-9. [DOI] [PubMed] [Google Scholar]
  9. Jost M., Shoemaker N., Noll H. Stepwise reconstruction of a ternary complex in protein synthesis. Nature. 1968 Jun 29;218(5148):1217–1223. doi: 10.1038/2181217a0. [DOI] [PubMed] [Google Scholar]
  10. Kaempfer R. O., Meselson M., Raskas H. J. Cyclic dissociation into stable subunits and re-formation of ribosomes during bacterial growth. J Mol Biol. 1968 Jan 28;31(2):277–289. doi: 10.1016/0022-2836(68)90444-0. [DOI] [PubMed] [Google Scholar]
  11. Kolakofsky D., Nakamoto T. The initiation of viral protein synthesis in e. Coli extracts. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1786–1793. doi: 10.1073/pnas.56.6.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leder P., Nau M. M. Initiation of protein synthesis. 3. Factor-GTP-codon-dependent binding of F-met-tRNA to ribosomes. Proc Natl Acad Sci U S A. 1967 Aug;58(2):774–781. doi: 10.1073/pnas.58.2.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lucas-Lenard J., Lipmann F. Initiation of polyphenylalanine synthesis by N-acetylphenylalanyl-SRNA. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1050–1057. doi: 10.1073/pnas.57.4.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nakamoto T., Hamel E. The activation of 50S and 30S E. coli ribosomes for polyphenylalanine synthesis. Proc Natl Acad Sci U S A. 1968 Jan;59(1):238–245. doi: 10.1073/pnas.59.1.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nakamoto T., Kalokofsky D. A possible mechanism for initiation of protein synthesis. Proc Natl Acad Sci U S A. 1966 Mar;55(3):606–613. doi: 10.1073/pnas.55.3.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nomura M., Lowry C. V. PHAGE f2 RNA-DIRECTED BINDING OF FORMYLMETHIONYL-TRNA TO RIBOSOMES AND THE ROLE OF 30S RIBOSOMAL SUBUNITS IN INITIATION OF PROTEIN SYNTHESIS. Proc Natl Acad Sci U S A. 1967 Sep;58(3):946–953. doi: 10.1073/pnas.58.3.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ohta T., Sarkar S., Thach R. E. The role of guanosine 5'-triphosphate in the initiation of peptide synthesis. 3. Binding of formylmethionyl-tRNA to ribosomes. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1638–1644. doi: 10.1073/pnas.58.4.1638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Revel M., Gros F. The stimulation by ribosomes of DNA transcription: requirement for a translation factor. Biochem Biophys Res Commun. 1967 Apr 7;27(1):12–19. doi: 10.1016/s0006-291x(67)80032-9. [DOI] [PubMed] [Google Scholar]
  19. Revel M., Herzberg M., Becarevic A., Gros F. Role of protein factor in the functional binding of ribosomes to natural messenger RNA. J Mol Biol. 1968 Apr 14;33(1):231–249. doi: 10.1016/0022-2836(68)90291-x. [DOI] [PubMed] [Google Scholar]
  20. Salas M., Hille M. B., Last J. A., Wahba A. J., Ochoa S. Translation of the genetic message, ii. Effect of initiation factors on the binding of formyl-methionyl-trna to ribosomes. Proc Natl Acad Sci U S A. 1967 Feb;57(2):387–394. doi: 10.1073/pnas.57.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schlessinger D., Mangiarotti G., Apirion D. The formation and stabilization of 30S and 50S ribosome couples in Escherichia coli. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1782–1789. doi: 10.1073/pnas.58.4.1782. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES