Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1968 Dec;61(4):1363–1369. doi: 10.1073/pnas.61.4.1363

Stepwise synthesis of a tripeptide.

A L Haenni, J Lucas-Lenard
PMCID: PMC225264  PMID: 4884684

Full text

PDF
1363

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLENDE J. E., MONRO R., LIPMANN F. RESOLUTION OF THE E. COLI AMINO ACYL SRNA TRANSFER FACTOR INTO TWO COMPLEMENTARY FRACTIONS. Proc Natl Acad Sci U S A. 1964 Jun;51:1211–1216. doi: 10.1073/pnas.51.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ARLINGHAUS R., SHAEFER J., SCHWEET R. MECHANISM OF PEPTIDE BOND FORMATION IN POLYPEPTIDE SYNTHESIS. Proc Natl Acad Sci U S A. 1964 Jun;51:1291–1299. doi: 10.1073/pnas.51.6.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson J. S., Dahlberg J. E., Bretscher M. S., Revel M., Clark B. F. GTP-stimulated binding of initiator-tRNA to ribosomes directed by f2 bacteriophage RNA. Nature. 1967 Dec 16;216(5120):1072–1076. doi: 10.1038/2161072a0. [DOI] [PubMed] [Google Scholar]
  4. CONWAY T. W., LIPMANN F. CHARACTERIZATION OF A RIBOSOME-LINKED GUANOSINE TRIPHOSPHATASE IN ESCHERICHIA COLI EXTRACTS. Proc Natl Acad Sci U S A. 1964 Dec;52:1462–1469. doi: 10.1073/pnas.52.6.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Erbe R. W., Leder P. Initiation and protein synthesis: translation of di- and tri-codon messengers. Biochem Biophys Res Commun. 1968 Jun 10;31(5):798–803. doi: 10.1016/0006-291x(68)90633-5. [DOI] [PubMed] [Google Scholar]
  6. Ertel R., Brot N., Redfield B., Allende J. E., Weissbach H. Binding of guanosine 5'-triphosphate by soluble factors required for polypeptide synthesis. Proc Natl Acad Sci U S A. 1968 Mar;59(3):861–868. doi: 10.1073/pnas.59.3.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gottesman M. E. Reaction of ribosome-bound peptidyl transfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycin. J Biol Chem. 1967 Dec 10;242(23):5564–5571. [PubMed] [Google Scholar]
  8. Haenni A. L., Chapeville F. The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis. Biochim Biophys Acta. 1966 Jan 18;114(1):135–148. doi: 10.1016/0005-2787(66)90261-9. [DOI] [PubMed] [Google Scholar]
  9. Heintz R., McAllister H., Arlinghaus R., Schweet R. Formation and function of the active ribosome complex. Cold Spring Harb Symp Quant Biol. 1966;31:633–639. doi: 10.1101/sqb.1966.031.01.082. [DOI] [PubMed] [Google Scholar]
  10. Hershey J. W., Thach R. E. Role of guanosine 5'-triphosphate in the initiation of Peptide synthesis, I. Synthesis of formylmethionyl-puromycin. Proc Natl Acad Sci U S A. 1967 Mar;57(3):759–766. doi: 10.1073/pnas.57.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leder P., Bursztyn H. Initiation of protein synthesis II. A convenient assay for the ribosome-dependent synthesis of N-formyl-C14-methionylpuromycin. Biochem Biophys Res Commun. 1966 Oct 20;25(2):233–238. doi: 10.1016/0006-291x(66)90586-9. [DOI] [PubMed] [Google Scholar]
  12. Lucas-Lenard J., Haenni A. L. Requirement of granosine 5'-triphosphate for ribosomal binding of aminoacyl-SRNA. Proc Natl Acad Sci U S A. 1968 Feb;59(2):554–560. doi: 10.1073/pnas.59.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lucas-Lenard J., Lipmann F. Initiation of polyphenylalanine synthesis by N-acetylphenylalanyl-SRNA. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1050–1057. doi: 10.1073/pnas.57.4.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lucas-Lenard J., Lipmann F. Separation of three microbial amino acid polymerization factors. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1562–1566. doi: 10.1073/pnas.55.6.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  16. Nishizuka Y., Lipmann F. Comparison of guanosine triphosphate split and polypeptide synthesis with a purified E. coli system. Proc Natl Acad Sci U S A. 1966 Jan;55(1):212–219. doi: 10.1073/pnas.55.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nishizuka Y., Lipmann F. The interrelationship between guanosine triphosphatase and amino acid polymerization. Arch Biochem Biophys. 1966 Sep 26;116(1):344–351. doi: 10.1016/0003-9861(66)90040-3. [DOI] [PubMed] [Google Scholar]
  18. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 3. The formation of peptide bonds by ribosomes in the absence of supernatant enzymes. J Biol Chem. 1968 May 25;243(10):2810–2820. [PubMed] [Google Scholar]
  19. Ravel J. M. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1811–1816. doi: 10.1073/pnas.57.6.1811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ravel J. M., Shorey R. L., Shive W. The composition of the active intermediate in the transfer of aminoacyl-RNA to ribosomes. Biochem Biophys Res Commun. 1968 Jul 11;32(1):9–14. doi: 10.1016/0006-291x(68)90418-x. [DOI] [PubMed] [Google Scholar]
  21. Skogerson L., Moldave K. Evidence for aminoacyl-tRNA binding, peptide bond synthesis, and translocase activities in the aminoacyl transfer reaction. Arch Biochem Biophys. 1968 May;125(2):497–505. doi: 10.1016/0003-9861(68)90607-3. [DOI] [PubMed] [Google Scholar]
  22. Skoultchi A., Ono Y., Moon H. M., Lengyel P. On three complementary amino acid polymerization factors from Bacillus stearothermophilus: separation of a complex containing two of the factors, guanosine-5'-triphosphate and aminoacyl-transfer RNA. Proc Natl Acad Sci U S A. 1968 Jun;60(2):675–682. doi: 10.1073/pnas.60.2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Takeda M., Webster R. E. Protein chain initiation and deformylation in B. subtilis homogenates. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1487–1494. doi: 10.1073/pnas.60.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tanaka N., Kinoshita T., Masukawa H. Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochem Biophys Res Commun. 1968 Feb 15;30(3):278–283. doi: 10.1016/0006-291x(68)90447-6. [DOI] [PubMed] [Google Scholar]
  25. WATSON J. D. THE SYNTHESIS OF PROTEINS UPON RIBOSOMES. Bull Soc Chim Biol (Paris) 1964;46:1399–1425. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES