Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 2000 Jan 15;522(Pt 2):215–230. doi: 10.1111/j.1469-7793.2000.t01-1-00215.x

Kinetic and mutational analysis of Zn2+ modulation of recombinant human inhibitory glycine receptors

Bodo Laube 1, Jochen Kuhse 1, Heinrich Betz 1
PMCID: PMC2269758  PMID: 10639099

Abstract

  1. The effects of Zn2+ on glycine receptor (GlyR) currents were analysed in Xenopus oocytes and human embryonic kidney cells expressing homomeric human wild-type and mutant α1 subunit GlyRs.

  2. Low concentrations (10 μm) of extracellular Zn2+ converted the partial agonist taurine into a high-efficacy agonist. Concentration-response analysis showed that the EC50 for taurine decreased whereas the Hill coefficient increased under these conditions. In contrast, 50–500 μm Zn2+ showed an increased EC50 value and reduced maximal inducible taurine currents. The potency of competitive antagonists was not affected in the presence of Zn2+.

  3. Single-channel recording from outside-out patches revealed different kinetics of glycine- and taurine-gated currents. With both agonists, Zn2+ altered the open probability of the α1 GlyR without changing its unitary conductance. Low Zn2+ concentrations (5 μm) increased both the opening frequency and mean burst duration, whereas higher Zn2+ concentrations (> 50 μm) reduced GlyR open probability mainly by decreasing the open frequency and the relative contribution of the longest burst of the single-channel events.

  4. Site-directed mutagenesis of the GlyR α1 subunit identified aspartate 80 and threonine 112 as important determinants of Zn2+ potentiation and inhibition, respectively, without affecting potentiation by ethanol.

  5. Our data support the view that Zn2+ modulates different steps of the receptor binding and gating cycle via specific allosteric high- and low-affinity binding sites in the extracellular N-terminal region of the GlyR α1 subunit.


Zn2+ is a naturally occurring metal ion that, in the brain, is highly abundant in small synaptic vesicles (Perez-Clausell & Danscher, 1985). Upon stimulation, Zn2+ is released into the synaptic cleft (Assaf & Chung, 1984) to reach estimated concentrations of several micromolar (Frederickson, 1989). Central effects of Zn2+ deficiency are often manifested in behavioural disorders, in particular lethargy and depression, indicating a crucial role of Zn2+ in neuronal signal processing (Cuajungco & Lees, 1997).

Many lines of evidence indicate that Zn2+ acts as a neuromodulator at postsynaptic receptors. These include the N-methyl-D-aspartate (NMDA), amino-3-hydroxy-5-methylisoxazol-propionic acid (AMPA) and kainate subtypes of excitatory glutamate receptors, ATP-gated ion channels and inhibitory ionotropic GABA receptors (Smart et al. 1994). Analysis of the blocking effects of Zn2+ at the NMDA receptor have revealed both voltage-dependent and -independent mechanisms, which result from channel block and decreases in the frequency of channel opening, respectively (see Smart et al. 1994). The Zn2+ sensitivity of GABAA receptors has been shown to depend on their subunit composition (see Smart et al. 1994). Histidine residues important for the inhibition of GABAA and GABAC receptors by Zn2+ have been identified on the α6 (Fisher & MacDonald, 1998), β1 (Wooltorton et al. 1997; Horenstein & Akabas, 1998) and ρ1 (Wang et al. 1995) subunits.

In previous reports, we and others have shown that Zn2+ also affects the function of the strychnine-sensitive glycine receptor (GlyR), another inhibitory ligand-gated ion channel (Bloomenthal et al. 1994; Laube et al. 1995a; Lynch et al. 1998). The GlyR is abundantly expressed in spinal cord and brainstem and mediates postsynaptic inhibition in many sensory and motor systems (Betz, 1992). Upon extracellular application, Zn2+ has a biphasic modulatory effect on glycine-gated chloride currents in cultivated embryonic spinal neurons and at recombinant GlyRs (Bloomenthal et al. 1994; Laube et al. 1995a). Low micromolar concentrations of Zn2+ potentiate glycine-gated chloride currents, whereas higher Zn2+ concentrations block glycine-induced chloride flux. The analysis of chimeric GlyR subunits indicates that the positive and negative effects of Zn2+ are exerted via different domains of the GlyR α1 subunit (Laube et al. 1995a). Although the glutamatergic mossy fibre axons in the hippocampus represent the most thoroughly studied Zn2+-containing neuronal system (Frederickson, 1989), there is histological evidence that Zn2+-accumulating neurons may also be localized in the dorsal spinal cord (Danscher, 1982), i.e. the region of highest GlyR expression in the central nervous system (Zarbin et al. 1981).

Since Zn2+ affects GlyR currents by changing the EC50 of glycine (Laube et al. 1995a), we wished to investigate the underlying mechanisms. Here, we show that Zn2+ has no effect on the single-channel conductance of the α1 GlyR but significantly alters its open probability. Potentiation results from increases in both open frequency and burst duration of glycine-gated channels. In contrast, Zn2+ inhibition appears to be mainly due to a reduced channel opening frequency. Notably, Zn2+ also converts the partial agonist taurine into a high-efficacy activating ligand. Using site-directed mutagenesis, we identified two amino acid residues in the N-terminal extracellular domain of the GlyR α1 subunit which are crucial for the modulatory effects of Zn2+. Our data can be summarized in a schematic model of GlyR activation, where Zn2+ acts at different steps of the receptor binding and gating cycle.

METHODS

cRNA synthesis, mutagenesis and oocyte expression

Linearized plasmid DNAs were used for in vitro synthesis of cRNA (Laube & Betz, 1998) using the mCAP mRNA capping kit (Stratagene, La Jolla, CA, USA). Mutants were constructed using oligonucleotide-directed mutagenesis (QuikChange site-directed mutagenesis Kit, Stratagene) as described (Laube et al. 1997). About 50 nl of each cRNA (50–200 ng ml−1) was injected into Xenopus laevis oocytes as detailed previously (Laube & Betz, 1998). For the isolation of stage V and VI oocytes, ovarian lobes were surgically removed from adult female frogs anaesthetized by immersion in 1% urethane (Sigma) by making a 1–2 cm incision in the abdomen. Following the ovariectomy, frogs were terminally anaesthetized and killed by decapitation. All protocols were approved by the local animal care and use committee (II25.3-19c20/15; RP Darmstadt, Germany). The ovarian lobes were then mechanically separated and incubated with collagenase Type IIA (Sigma) for 1–3 h to enzymatically dissociate the oocytes. Before injection, the layer of follicle cells surrounding the isolated oocytes was removed using forceps, and oocytes were maintained in Barth's medium (composition (mM): 88 NaCl, 1 KCl, 0.4 CaCl2, 0.3 Ca(NO3)2, 8.2 MgSO4, 2.4 NaHCO3, 10 Tris, pH 7.2). Voltage clamp recording from injected oocytes was performed at a holding potential of −70 mV (Laube et al. 1997) in frog Ringer solution containing (mM): 115 NaCl, 1 KCl, 1.8 CaCl2 and 10 Hepes (pH 7.2). Effects of Zn2+ on glycine-induced currents were analysed after superfusing the oocytes with Zn2+ for 5 s prior to and during agonist application. Dose-response curves of agonist-induced peak currents (I) were normalized to the maximal current value (Imax) obtained and fitted with the sigmoidal Hill equation I/Imax=cn/(cn+ EC50n) using a Gauss-Marquardt iteration, where I/Imax represents normalized current, c glycine concentration, EC50 the glycine concentration resulting in a half-maximal response, and n the Hill coefficient. Dose-response curves of Zn2+-modulated currents were determined in the presence of glycine concentrations eliciting a response corresponding to 25 % of the maximal inducible current (EC25 value) and normalized to the current obtained in the absence of Zn2+. Data were fitted to the following equation:

graphic file with name tjp0522-0215-m1.jpg (1)

using a Gauss-Marquardt iteration, where I/Imax represents normalized current, m1 the maximal potentiation, c the Zn2+ concentration, EC50 and IC50 the 50% effective Zn2+ concentration for potentiation and inhibition, respectively, and n1 and n2 the corresponding Hill coefficients.

Cell transfection and electrophysiological recording

Human embryonic kidney (HEK) 293 cells (ATCC CRL 1573) were transfected (Laube & Betz, 1998) with the human α1 subunit cDNA as well as mutants thereof. All cDNAs were inserted into the mammalian expression vectors pCIS2 (Gormann et al. 1990) or pRc/CMV (Invitrogen, San Diego, CA, USA). After 2 days, the transfected HEK 293 cells were viewed with an inverted microscope (Zeiss, Deissenhofen, Germany) and continuously perfused (0.5 ml min−1) at room temperature (21–25°C) with Ringer solution containing (mM): 137 NaCl, 5.4 KCl, 1.8 CaCl2, 1 MgCl2 and 5 Hepes (pH 7.4). Patch pipettes contained (mM): 120 CsCl, 20 tetraethylammonium chloride, 1 CaCl2, 2 MgCl2, 11 EGTA and 10 Hepes (pH 7.2). Membrane currents were recorded from whole cells and cell-free membrane patches (Hamill et al. 1981) using an EPC-9 amplifier (HEKA Elektronik, Lambrecht, Germany). Whole-cell currents were sampled at 20 Hz and stored on disk. Single-channel recordings were stored on digital audiotape (DTR 1204; Biologic, Claix, France). The membrane potential was clamped at −70 mV in all experiments. Glycine was applied with the bath solution using a microcapillary application system (DAD-12; Adams and List, Westbury, NY, USA). All drugs were purchased from Sigma (Deissenhofen, Germany).

Single-channel analysis

Single-channel data were digitized at 10 kHz and analysed after low-pass filtering at 2.3 kHz (-3 dB) as described in Langosch et al. (1994). The shortest detectable single-channel event was 70 μs. Channel openings were identified using the 50% threshold-crossing criterion, and half-amplitude threshold analysis was done with a semiautomatic procedure using a program for ‘threshold analysis of continuous’ (TAC) single-channel records of the M2-LAB software package (Instrutech Corporation, Elmont, NY, USA) which forms part of the EPC9-program of the HEKA software (Lambrecht, Germany). Only the most frequent conductance state (main state) was analysed. Amplitude histograms were constructed from digitized traces and fitted with Gaussian curves using a non-linear least-squares routine (Langosch et al. 1994). The Gaussian fit provides an estimate of mean current amplitude.

The total open probability (NPo; the product of number of channels and open probability times) was determined using the TAC program. Open probabilities were calculated as the sum of each dwell time multiplied by the level number and divided by the total recording time. The number of channels in the patch was estimated as being greater than or equal to the maximal number of simultaneous openings observed during recording. Values of NPo were computed from 2 min recordings.

Distributions of the open period and closed time durations were displayed using the square root of the number of events per bin and fitted with a mixture of exponential densities by the method of maximum likelihood to define the respective time constants τi (ms) and areas ai (%) (Colquhoun & Sigworth, 1995). The overall mean open time was calculated by the sum of the product of individual dwell times multiplied by the level numbers, divided by the number of opening transitions. Simultaneous channel openings were discarded from the analysis. To obtain estimates of channel burst duration, closed time distributions were created for each record using the TAC program. Histograms were fitted with three to four well-separated areas and time constants using the method of maximum likelihood. Visual inspection of the single-channel events revealed that only the shortest component of the closed time distribution (τ1) seemed to be closures within bursts; thus only the first closed time population was considered within bursts and was therefore assumed to represent closures within a burst. In contrast, only bursts characterized by the longest time constant seemed to correspond to groups of successive openings, whereas the remaining burst populations always appeared to be isolated openings. Using the method of equal percentage of misclassified bursts (Colquhoun & Sigworth, 1995), values of 0.8-3 ms were used as a critical gap length (tcrit) to define bursts, such that successive openings that were separated by closures < tcrit were classified as closures within a single burst, whereas openings separated by closures >tcrit were assigned to discrete bursts. The constructed burst durations were used to define the total open time per burst as described for open times. Burst durations were binned logarithmically (bin width 1/10 of a log unit) and fitted with multiple exponential functions (Sigworth & Sine, 1987). From the ratio of the longest burst time constant to the shortest closed time constants, the number of closures per burst was calculated.

For evaluating the distinct microscopic effects of Zn2+, a model for receptor gating according to del Castillo & Katz (1957) was used, in which three agonist molecules must bind to the receptor for channel opening (see Fig. 5; see also Twyman & Macdonald, 1991 and Lewis et al. 1998). The rate constants kplus; 1 and k-1 govern agonist binding and unbinding, whereas β and α control the actual opening and closing steps. The rate constants β, α and k-1 for each of the steps in the activation process were estimated from analysing transitions within bursts (Colquhoun & Hawkes, 1981) using the maximum likelihood method:

graphic file with name tjp0522-0215-m2.jpg (2)
graphic file with name tjp0522-0215-m3.jpg (3)
graphic file with name tjp0522-0215-m4.jpg (4)

where ng is the mean number of shut periods per burst, tg the length of gaps and tb the length of bursts.

Figure 5. Model of the mechanisms and sites of Zn2+ action at the α1 subunit GlyR.

Figure 5

A, reaction scheme for GlyR gating indicating the steps at which Zn2+ affects glycine currents. In this scheme, three agonist binding sites assumed to display identical binding affinities (K; binding) have to be occupied to achieve a liganded state from which channel gating (E; gating) can occur with high probability (see Discussion). Accordingly, (1) potentiating Zn2+ concentrations increase agonist occupation by mainly decreasing the unbinding constant k-1; (2) inhibitory concentrations of Zn2+ drastically decrease gating efficacy, thus generating mixed surmountable/non-competitive Zn2+ antagonism. A denotes the agonist, R the unoccupied receptor, AnR the n-liganded closed channel states, and A3R* the liganded open-channel state of the GlyR. The rate constants k+ 1 and k-1 govern agonist binding and unbinding, whereas β and α control the actual opening and closing steps. B, schematic model of an α1 subunit GlyR illustrating the putative sites of Zn2+ action delineated above. A high-affinity Zn2+ site including the aspartate 80 residue (D80) is proposed to mediate the potentiating effect of Zn2+ that results from an increased receptor occupancy (1, illustrated in the left subunit). The inhibitory low-affinity site for Zn2+ is suggested to include threonine 112 (T112), i.e. a residue crucial for Zn2+ inhibition (illustrated in the right subunit). This site is thought to have a direct effect on the channel gating process (2, arrow). + and – indicate positive and negative modulatory effects of Zn2+ on GlyR activation. Gly, glycine. For clarity, only two α1 subunits are shown in detail, although the α1 GlyR is composed of five subunits (Kuhse et al. 1993).

Results represent means ±s.d. unless indicated otherwise. The significance of the data was evaluated using Student's paired t test and considered to be statistically significant at P < 0.05.

RESULTS

To gain insight into the mechanisms of GlyR modulation by Zn2+, we generated homo-oligomeric GlyRs by heterologous expression of human wild-type and mutant α1 subunits and analysed their agonist responses and single-channel properties in the presence of different Zn2+ concentrations.

Zn2+ converts taurine from a partial into a full GlyR agonist

Both potentiation and inhibition of GlyR currents by Zn2+ are fully reversible and also seen upon application of other glycinergic agonists, e.g. β-alanine and taurine (Laube et al. 1995a). Taurine is a partial agonist of the GlyR, which produces maximal current responses that are significantly lower than those obtained with glycine (Laube et al. 1995b). Here, superfusion of α1 subunit-expressing oocytes with taurine (10 mM) evoked maximal membrane currents (Imax) with an amplitude of 42 ± 13% of that obtained at saturating glycine concentrations; half-maximal activation was seen at a concentration (EC50) of 0.92 ± 0.15 mM with a corresponding Hill coefficient of 1.66 ± 0.2. Addition of Zn2+ at concentrations up to 10 μm (Fig. 1a) produced a significant decrease in the EC50 of taurine (0.42 ± 0.1 mM; P < 0.05), whereas a concentration of 100 μm Zn2+ (EC50 for taurine: 2.7 ± 0.2 mM; P < 0.05; Fig. 1a) resulted in the opposite effect. Both Hill slopes were altered significantly (P < 0.05) with values of 2.2 and 1.2, respectively, compared with 1.66 in the absence of Zn2+, suggesting that Zn2+ might affect the cooperativity between the GlyR agonist binding sites (Laube et al. 1995a). These results are consistent with previously described changes in glycine responses (Bloomenthal et al. 1994; Laube et al. 1995a).

Figure 1. Effect of different concentrations of Zn2+ on agonist and antagonist responses of the recombinant α1 subunit GlyR.

Figure 1

A, taurine dose-response curves in the presence of Zn2+. Oocytes expressing the α1 subunit were superfused with the indicated concentrations of taurine in the absence (•) and presence of 10 μm (▪) and 100 μm (♦) Zn2+. The respective EC50 values, with Hill coefficients in parentheses, are 920 ± 150 μm (1.66 ± 0.2), 420 ± 100 μm (2.22 ± 0.3) and 2700 ± 200 μm (1.2 ± 0.2). B, maximal inducible currents of glycine (5 mM, •) and taurine (20 mM, ▪) in the presence of different Zn2+ concentrations. Data are plotted as a fraction of the maximal glycine current in the absence of Zn2+. Note biphasic dose dependence on Zn2+ for taurine currents compared with glycine-induced currents. C, strychnine antagonism of glycine currents in the absence (•) and presence of 1 μm (▪) and 100 μm (♦) Zn2+, determined at glycine concentrations corresponding to the EC50 value of the respective Zn2+ concentration. The respective IC50 values are 35 ± 2.5, 43 ± 5 and 39 ± 4 nM. Data are given as current relative to the glycine control response. Smooth curves represent least-squares fits to the Hill equation. Data are normalized to maximal currents obtained in the absence of antagonist and represent the means ±s.d. of at least three independent experiments.

A remarkable difference in the modulation of glycine- and taurine-gated currents became apparent, however, when comparing relative Imax values. In contrast to glycine, where Zn2+ up to 100 μm did not significantly alter maximal glycine-inducible whole-cell currents (Laube et al. 1995a; and Fig. 1B), the Imax value of taurine was increased in the presence of low concentrations of Zn2+ (Fig. 1B). At 1 μm and 10 μm Zn2+ maximal taurine responses were considerably higher than those in the absence of the metal ion (relative maximal amplitudes of 59 ± 9 and 81 ± 13%, respectively). Zn2+ antagonism was overcome by increasing agonist concentrations at Zn2+ concentrations less than 100 μm (Laube et al. 1995a; and Fig. 1a). However, for Zn2+ concentrations > 100 μm, inhibition was only partially relieved by high concentrations of both glycine and taurine (Fig. 1B). Again, Zn2+ showed a more dramatic effect on the Imax values elicited by taurine than on those obtained with glycine (Fig. 1B). In contrast, the potency of the competitive antagonist strychnine for inhibiting agonist currents at the corresponding EC50 values of glycine was not affected at these Zn2+ concentrations (Fig. 1C).

Zn2+ binding to proteins often involves histidine residues (Vallee & Falschuk, 1993). This implies a strong pH dependence of Zn2+ binding. For GABAA receptors, the inhibitory effect of Zn2+ has been shown to be sensitive to changes in extracellular pH (Smart & Constanti, 1982). To evaluate a putative interaction of Zn2+ with protonatable amino acid side chains, we determined the pH dependence of Zn2+ action on α1 subunit GlyRs. At a pH of 5.6, the current activated by 200 μm glycine was significantly reduced (> 20%) in comparison to neutral conditions (not shown). Acidification, by reducing the pH range from 7.2 to 5.6, shifted the glycine concentration-response curve to the right, thus increasing the EC50 value for glycine without significantly altering the glycine Imax. Under the same conditions, the concentration-response profile of Zn2+ potentiation was not altered (not shown), whereas the inhibitory potency of Zn2+ was reduced at acidic pH (IC50 25 μm at pH 7.2, 283 μm at pH 5.6). This change might be attributed to the protonation of histidine residues, suggesting that histidine side chains contribute to GlyR inhibition but not potentiation by Zn2+. Alternatively, this pH effect could reflect partial complexation of Zn2+ by glycine (see below).

Zn2+ alters the probability of GlyR channel opening

To unravel the voltage-dependent and -independent components of Zn2+ modulation, we analysed glycine- and taurine-induced whole-cell currents and single-channel events in the absence and presence of different concentrations of Zn2+. Figure 2a and D show channels recorded from an outside-out patch excised from a HEK 293 cell transfected with the α1 subunit after application of 3 μm glycine and 30 μm taurine, respectively. No channels were detected in the patch before agonist application. Inspection of current traces as shown in Fig. 2a and D suggested that glycine and taurine induce a different gating behaviour of α1 subunit GlyRs. Whereas single-channel currents recorded in the presence of 3 μm glycine showed a burst-like appearance separated by longer intervals, single-channel records in the presence of 30 μm taurine revealed largely isolated opening events (compare Fig. 2a and D). The most prominent effect of Zn2+ on both glycine- and taurine-gated currents was an alteration in the probability of channel opening (Fig. 2B, C and E), with 5 μm Zn2+ causing an increase, and 50 μm Zn2+ a decrease, in the apparent open probability of GlyR channels. To substantiate this observation, we quantified the total open probability measured after exposure to various concentrations of Zn2+. A plot of the relative values of the total open probability vs. concentration obtained from the comparison of different cells (see also legend of Fig. 2) confirmed that Zn2+ indeed causes significant concentration-dependent changes in apparent open probability with both glycine and taurine (Fig. 2F; P < 0.05). Together, our data indicate that 5 μm Zn2+ increases the open probability of GlyR channels by about 2.5- to 5-fold, whereas 50 μm Zn2+ decreases it by about 70–90%.

Figure 2. Single-channel recordings of glycine and taurine currents in the absence and presence of Zn2+.

Figure 2

Outside-out patch recordings from a HEK 293 cell expressing the α1 subunit in the absence (A and D) and presence of 5 μm (B and E) and 50 μm (C) Zn2+ (for the respective gating characteristics see Fig. 3). The membrane potential was clamped at −70 mV. Traces represent single-channel inward currents induced by 3 μm glycine (A–C) and 30 μm taurine (D and E). F, normalized values of the total open probability for glycine (▪) and taurine (□) are plotted for the indicated Zn2+ concentrations. G, potentiation and inhibition of GlyR currents by Zn2+ are voltage independent. Current-voltage ramps of glycine-elicited currents recorded from a HEK 293 cell transfected with α1 cDNA before (a) and after application of 5 μm (b) or 50 μm (c) Zn2+. The cell was dialysed with standard intracellular solution resulting in Cl concentrations of 145 mM on both sides of the membrane. H-J, conductance states evoked by 3 μm glycine in the absence (H) and presence of 5 μm (I) or 50 μm (J) Zn2+ for the patch recorded from in A-C. In the absence of Zn2+, conductance states of 5.9 pA (77% of all events), 4.9 pA (9%), 3.6 pA (10%) and 1.5 pA (3%) were seen (H). In the presence of 5 μm (I) or 50 μm (J) Zn2+, the respective conductance states were 6.2 pA (83%), 4.7 pA (10%), and 3.2 pA (7%), or 5.8 pA (80%), 5.4 pA (13%) and 4.2 pA (7%), respectively.

To reveal possible channel-blocking effects of higher Zn2+ concentrations that could account for the non-competitive Zn2+ inhibition (see Fig. 1B), we analysed the current- voltage relationship of glycine-gated currents in the presence of 5, 50 (Fig. 2G) and 500 μm Zn2+ (not shown). The overall shape of the current-voltage relations of the α1 subunit GlyR was unaffected by the presence of Zn2+, irrespective of whether potentiating or inhibiting concentrations were used. This indicates a voltage-independent mechanism of Zn2+ inhibition and suggests that the effects of potentiating and inhibitory concentrations of Zn2+ on whole-cell glycine- and taurine-activated currents are a consequence of alterations in gating behaviour or ligand binding affinity rather than of changes in channel conductance.

Further analysis of the single-channel properties of the GlyR resulted in a more detailed picture of Zn2+ action. Amplitude histograms constructed from single-channel recordings obtained at different Zn2+ concentrations were fitted to the sum of multiple Gaussian functions to estimate channel amplitudes (Fig. 2HJ). At −70 mV and identical extra- and intracellular Cl concentrations, we observed glycine- and taurine-activated elementary inward currents with a predominant amplitude of about 6 pA, indicating that glycine and taurine activate similar single-channel conductances. Linear regression analysis of the slope of the main conductance amplitude for recordings obtained from control cells and from cells exposed to 5 and 50 μm Zn2+ revealed no apparent effect of Zn2+ on glycine-induced single-channel conductance. Averaged main-state conductances were about 85–90 pS (> 80%), with some smaller and less frequent conductances seen in both the absence and presence of Zn2+ (see for example Fig. 2H). For the patch shown in Fig. 2A–C, the relative frequency of each conductance state was not altered significantly. In the absence and presence of 5 and 50 μm Zn2+, similar conductance distributions were found (see legend of Fig. 2), corroborating that Zn2+ had no apparent effect on single-channel conductances and relative frequencies.

To examine the action of Zn2+ on glycine-gated channel openings, we analysed our channel records in greater detail (Fig. 3; Table 1). For the patch shown in Fig. 2A–C, glycine alone activated channels with a mean open time of 2.01 ms; coapplication of 5 μm Zn2+ caused an increase, and of 50 μm Zn2+ a decrease, of this value to 2.28 and 1.51 ms, respectively. When comparing the results of three different patches, the mean open times determined in the presence of 5 μm (3.44 ± 1.41 ms) and 50 μm Zn2+ (1.25 ± 0.7 ms) were significantly different from each other (P < 0.05), but were not statistically different from those obtained in the absence of Zn2+ (2.16 ± 1.0 ms) (Fig. 3J). The distribution of closed times as binned in 0.2 ms intervals in the presence of 3 μm glycine could be fitted by four exponentials using the closed times listed in the insets to Fig. 3A, D and G (see for comparison Twyman & Macdonald, 1991; Takahashi et al. 1992; Lewis et al. 1998). The fastest component (τ1, time constant of about 0.3-0.4 ms) always comprised the largest fraction of the total number of closures and presumably reflects the average duration of closings within bursts (Fig. 3A; Table 1). This component varied little between different patches and in the absence or presence of Zn2+, in contrast to the three slower components that showed more variability (Fig. 3; Table 1). Since the probability of opening increased in the presence of 5 μm Zn2+ (Fig. 2F), we compared the relative contribution of the closed time periods in the absence and presence of different Zn2+ concentrations. Zn2+ (5 μm) decreased the longest closed time constant (τ4) and its relative area presumably as a consequence of an increased number of openings (Fig. 3D; Table 1). Thus, the increased open probability in the presence of Zn2+ might be attributed to the decrease in the longest component of the closed time constant. In contrast, higher concentrations of Zn2+ (50 μm) increased the longest closed time constant (τ4) and the relative area (a4) as a consequence of a reduced number of openings (Fig. 3G; Table 1). We also compiled open time histograms to examine whether the changes in open probabilities might be due to a shift in the open state duration of the channel. Open-time histograms were constructed from data obtained before and after exposure of the patches to 5 and 50 μm Zn2+, respectively (Fig. 3B, E and H). The mean time constants (τ1, τ2 and τ3) for each component obtained by exponential fitting procedure were not significantly different in the absence and presence of Zn2+ (see Table 1). A comparison of the relative areas of each time constant in the histogram, which represent a measure of the relative frequency of openings contributed by each channel component, showed no major changes in respective relative areas in the presence of Zn2+ (Table 1).

Figure 3. Gating characteristics of the α1 subunit GlyR in the absence and presence of Zn2+.

Figure 3

A-I, histograms of closed time (A, D and G), open time (B, E and H), and burst duration (C, F and I) distributions, constructed from a total of 2377 (A and B) and 930 (C) glycine-induced openings in the absence (mean open time 2.01 ms, open probability 0.046), 6177 (D and E) and 2321 (F) openings in the presence of 5 μm Zn2+ (mean open time 2.28 ms, open probability 0.11), 488 (G and H) and 266 (I) openings in the presence of 50 μm Zn2+ (mean open time 1.51 ms, open probability 0.0067), respectively. Abscissae are binned logarithmically (bin width 1/10 of a log unit), and ordinates are scaled to display N, the square root of the number of events per bin. All three distributions were fitted with multiple exponentials (continuous curves). The estimated parameters (time constants τ (ms) and relative areas (%)) are shown in each panel. J and K, kinetic properties of glycine-evoked single-channel currents in the absence and presence of Zn2+. Absolute mean open and burst time durations of α1 homo-oligomeric GlyRs (J). Relative weights of the three different components of the burst distribution calculated for GlyRs in the absence and presence of different concentrations of Zn2+ (K). Note that τ3 is affected by low, and τ2 and τ3 by high concentrations of the metal ion.

Table 1.

Kinetic analysis of glycine- and taurine-gated α1 GlyR currents in the absence and presence of Zn2+

Glycine-gated

α1 α1D80G Taurine-gated α1



Control +5 μm Zn2+ +50 μm Zn2+ Control +5 μm Zn2+ Control +5 μm Zn2+
Closed times
τ1 (ms) 0.30 ± 0.09 0.34 ± 0.07 0.37 ± 0.1 0.37 ± 0.05 0.4 ± 0.1 0.65 ± 0.47 0.55 ± 0.25
(%) 61 ± 9 72 ± 10 52 ± 7 54 ± 14 72 ± 10 29 ± 4 47 ± 5
τ2 (ms) 2.4 ± 1.3 3.2 ± 1.3 2.7 ± 1.9 1.9 ± 0.9 2.5 ± 1.4 120 ± 105 65 ± 54
(%) 17 ± 11 10 ± 3 9 ± 2 23 ± 5 19 ± 3 62 ± 5 30 ± 7
τ3 (ms) 21 ± 15 31 ± 15 30 ± 25 20 ± 8.8 23 ± 22 800 ± 657 400 ± 287
(%) 3 ± 2 4 ± 5 2 ± 2 9 ± 2 6 ± 5 9 ± 7 23 ± 4
τ4 (ms) 250 ± 265 150 ± 154 600 ± 451 70 ± 82 90 ± 85 n.d. n.d.
(%) 19 ± 7 14 ± 6 37 ± 11 14 ± 6 3 ± 3 n.d. n.d.
Open times
τ1 (ms) 0.66 ± 0.14 0.60 ± 0.2 0.68 ± 0.3 0.45 ± 0.29 0.51 ± 0.09 0.70 ± 0.34 0.62 ± 0.3
(%) 68 ± 7 60 ± 11 83 ± 14 74 ± 8 82 ± 6 92 ± 7 41 ± 11
τ2 (ms) 3.6 ± 1.8 5.0 ± 0.9 2.9 ± 2.8 1.1 ± 0.5 2.4 ± 0.8 3.0 ± 2.9 3.2 ± 3.1
(%) 29 ± 8 36 ± 9 15 ± 6 23 ± 5 15 ± 4 8 ± 7 59 ± 11
τ3 (ms) 22 ± 17 32 ± 29 15 ± 19 8.8 ± 1.7 11 ± 2.2 n.d. n.d.
(%) 3 ± 4 4 ± 5 2 ± 4 3 ± 3 3 ± 2 n.d. n.d.
Burst duration
τ1 (ms) 0.46 ± 0.14 0.45 ± 0.25 0.41 ± 0.3 0.39 ± 0.19 0.40 ± 0.1 0.56 ± 0.24 0.54 ± 0.3
(%) 64 ± 19 46 ± 10 62 ± 9 54 ± 10 52 ± 4 82 ± 8 57 ± 13
τ2 (ms) 3.7 ± 1.8 5.7 ± 0.9 3.3 ± 2.8 4.5 ± 1.2 4.2 ± 1.4 4.2 ± 3.6 10.4 ± 9.8
(%) 24 ± 8 35 ± 2 35 ± 13 33 ± 9 32 ± 5 18 ± 8 43 ± 13
τ3 (ms) 27 ± 17 87 ± 29 40 ± 19 20 ± 18 23 ± 26 n.d. 84*
(%) 12 ± 8 19 ± 6 3 ± 5 13 ± 3 16 ± 3 n.d. 2

Time constants τ (ms) and their relative areas (%) obtained from fits of closed time, open time and burst length distributions at a glycine concentration of 3 μm for the α1 wild-type and α1D80G mutant are given. The taurine concentration used was 30 μm. Numbers represent means ± s.d. of at least three determinations. n.d., not determined.

*

This time constant was only seen in one patch out of three.

When analysing the single-channel events recorded in the presence of 3 μm glycine from the patch shown in Fig. 2A–C, bursts were fitted best when assuming three different components with time constants of 0.6 (τ1), 4.6 (τ2) and 38 (τ3) ms. The time constants τ1 and τ2 did not change in the presence of 5 μm Zn2+. However, in all patches analysed a significant increase in the relative contribution of the longest time constant τ3 was observed (Fig. 3K; Table 1), resulting in a significant prolongation in the mean burst time (16.5 ± 4.4 vs. 4.45 ± 2.01 ms; Fig. 3J). We therefore propose that the increase in mean burst duration may be largely attributed to both an increase in the relative contribution of the longest component (τ3) and a corresponding decrease in τ1 and τ2 of the short burst components (Fig. 3K). In contrast, 50 μm Zn2+ produced a significant reduction of the relative area of τ3 and of the relative current carried by the longest bursts (Fig. 3K; Table 1). Thus, higher concentrations of Zn2+ decreased the relative contribution of the longest burst duration, causing a decrease in mean burst duration (2.65 ± 1.3 ms; Fig. 3J). In conclusion, in addition to enhancing channel opening frequency, 5 μm Zn2+ increased the relative contribution of the longest burst population (Table 1; Fig. 3C, F and K), resulting in a prolonged mean burst time (Fig. 3J). In contrast, 50 μm Zn2+ altered the kinetics of glycine-gated channels mainly by changing the average mean burst time and the fraction of current carried by the longest burst (Table 1; Fig. 3C, I, J and K).

We also analysed the closed and open times of single-channel currents activated by 30 μm taurine in the absence and presence of 5 μm Zn2+ (Table 1). The distribution of closed times in the presence of 30 μm taurine was best fitted by three exponentials with closed times of 0.65 ± 0.47 ms (29%), 120 ± 105 ms (62%) and 800 ± 657 ms (9%) (Table 1). In contrast to glycine-induced currents, where closed time distributions were best fitted by the sum of four exponentials, the most rapid component (time constant of about 0.6 ms) did not correspond to the highest number of closures (< 30%); this presumably reflects the low abundance of closings within bursts. Application of 5 μm Zn2+ caused a 2.8-fold increase in mean open time, which is more pronounced than results obtained with glycine (see Fig. 3J). In the presence of 5 μm Zn2+, observed closed times were 0.55 ± 0.25 ms (47%), 65 ± 54 ms (30%) and 400 ± 287 ms (23%). Open time histograms were again constructed from data obtained before and after exposure of the patches to 5 μm Zn2+. Open times were fitted best when assuming two different components with time constants of 0.7 ± 0.34 ms (τ1; 92%) and 3 ± 2.9 ms (τ2; 8%) in the absence, and 0.62 ± 0.3 ms (41%) and 3.2 ± 3.1 ms (59%) in the presence, of Zn2+ (Table 1). The contribution of the mean time constant (τ2) of the long openings showed a significant increase in the presence of Zn2+ (see Table 1). Using a critical gap duration of ∼3 ms, average burst durations of 0.56 ± 0.24 ms (82%) and 4.2 ± 3.6 ms (18%) were obtained. Interestingly, open time and burst time distributions were very similar, reflecting again the low abundance of closings within bursts. Bursts recorded in the presence of 5 μm Zn2+ had average durations of 0.54 ± 0.3 ms (57%) and 10.4 ± 9.8 ms (43%) (Table 1). Taking into account the burst durations (Table 1), the relative contributions carried by the longest bursts were 62 and 93% in the absence and presence of 5 μm Zn2+, respectively. Thus, Zn2+ modulation of taurine-gated currents yielded results similar to those seen with glycine (see Fig. 3K). For both agonists, a change in the frequency of channel opening, as well in mean burst duration, was found in the presence of 5 μm Zn2+. However, a significant prolongation of the mean open time and the longest time constant of burst duration was only seen for taurine responses (Table 1).

In conclusion, this analysis confirms the previously observed macroscopic effects (Laube et al. 1995a), as low concentrations of Zn2+ (5 μm) enhanced the open probability of the GlyR channel by a factor of 2–5, whereas higher concentrations (50 μm) decreased the former without changes in amplitude or relative frequency of single-channel conductances. Our data indicate that low concentrations of Zn2+ increase the probability of the channel being in the open state by increasing burst frequency and duration in the presence of glycine or taurine. Higher Zn2+ concentrations inversely decrease channel open probability by decreasing burst frequency and mean burst duration.

Mutations in the extracellular N-terminal region of the α1 subunit affect Zn2+ potentiation and inhibition differentially

To reveal possible correlations between agonist binding and Zn2+ modulation, we analysed the effects of Zn2+ on α1 subunit mutants known to display altered agonist responses. Substitution of arginine 271 by lysine (R271K) causes a ∼10-fold increase in the EC50 for glycine (Langosch et al. 1994), whereas the F159Y mutant shows a 4-fold enhanced efficacy of glycine activation (Schmieden et al. 1993). Although the R271K mutant exhibits a drastically reduced affinity for glycine, currents evoked with concentrations of glycine corresponding to the EC25 value were similarly modulated by Zn2+ when compared with that seen with the wild-type α1 subunit (Fig. 4a). As the R271K substitution has been shown to convert the partial agonist taurine into a fully competitive antagonist of glycine receptor activation (Laube et al. 1995b; Rajendra et al. 1995), we also analysed taurine inhibition in the presence of Zn2+. At different concentrations of Zn2+, the potency of taurine to block glycine-induced currents was not altered (data not shown). This indicates that Zn2+ mainly affects the agonistic properties of taurine whereas its antagonistic potency is not changed. Analysis of the high affinity mutant α1F159Y in the presence of the corresponding EC25 for glycine showed a similar biphasic modulation by Zn2+ as seen with the wild-type α1 subunit (Fig. 4a). Although very different EC25 concentrations of glycine were required to activate the wild-type and mutant receptors, similar concentrations of Zn2+ potentiated and antagonized the agonist response. These data imply that the inhibitory effects of Zn2+ cannot be attributed to a chelation of the agonists by Zn2+, as both the low and high affinity mutants showed rather similar Zn2+ modulation profiles.

Figure 4. Analysis of α1 subunit mutations.

Figure 4

A, Zn2+ dose-response curves obtained from oocytes injected with either the wild-type α1 cRNA (dashed line) or the α1R271K (•) and the α1F159Y (▪) mutant cRNAs in the presence of glycine concentrations corresponding to the respective EC25 values. B, Zn2+ dose-response curves obtained from oocytes injected with either the wild-type α1 cRNA (dashed line) or the α1D80G (▴) and the α1T112A (♦) mutant cRNAs in the presence of glycine concentrations corresponding to the respective EC25 values. C, ethanol (EtOH) modulation of oocytes injected with either the wild-type α1 (▪) or the α1D80G (□) cRNA in the absence and presence of 5 and 50 μm Zn2+ (n = 5). D, outside-out patch recording from a HEK 293 cell expressing the α1D80G mutant protein in the absence and presence of 5 μm Zn2+. E-J, gating properties of α1D80G GlyRs in the absence and presence of 5 μm Zn2+. Histograms of closed time (E and H), open time (F and I) and burst duration (G and J) were constructed from a total number of channel openings of 7887 (E and F) and 2768 (G) in the absence (mean open time 2.57 ms, open probability 0.15) and 7893 (H and I) and 1988 (J) in the presence of 5 μm Zn2+ (mean open time 1.88 ms, open probability 0.13); the glycine concentration used was 3 μm. Abscissae are binned logarithmically (bin width 1/10 of a log unit), and ordinates are scaled to display N, the square root of the number of events per bin. All three distributions were fitted with multiple exponentials (continuous curves). The estimated parameters (time constants τ (ms) and relative areas (%)) are shown for each panel.

Our previous analysis of α1/β chimeric GlyR subunits has shown that the positive and negative effects of Zn2+ are exerted via different regions of the extracellular N-terminal domain of the α1 subunit. This led to the proposal that two different Zn2+ binding sites exist, and that residues which are not conserved between the α1 and β subunit, are involved in Zn2+ potentiation (Laube et al. 1995a). Here, we employed site-directed mutagenesis to positions of the N-terminal extracellular region of the recombinant human α1 subunit, which differ between the α1 and β sequence, in order to identify residues responsible for the modulatory effects of Zn2+. The non-conserved residues aspartate 80 (D80) and tyrosine 75 (Y75) were considered as candidate side chains because these amino acids interact with Zn2+ in other proteins and lie in a segment previously shown to be required for Zn2+ potentiation (Vallee & Falschuk, 1993; Laube et al. 1995a). Replacement of aspartate 80 by glycine generated glycine-gated receptor channels which showed no apparent differences in the EC50 value of glycine (0.2 ± 0.04 mM) or the IC50 value of strychnine (not shown) but markedly differed in Zn2+ potentiation (Fig. 4B, Table 2). The glycine response of the D80G mutant was inhibited at higher concentrations of Zn2+, whereas Zn2+ potentiation was completely abolished. In contrast, the Y75F mutant required higher concentrations of glycine for efficient gating (EC50 1.2 vs. 0.26 mM), but showed no impairment in the ability of Zn2+ to either potentiate or inhibit currents activated by EC25 concentrations of glycine (Table 2).

Table 2.

EC50 values of glycine and Zn2+ effects at wild-type and mutant α1 subunit GlyRs

Zinc

cRNA injected Glycine EC50 (mm) EC50m) max. pot. (%) IC50m) n
Wild-type 0.26 ± 0.02 0.89 ± 0.3 260 25 ± 4 10
Y75F 1.1 ± 0.2 0.96 ± 0.28 245 43 ± 21 3
Y78F 0.36 ± 0.1 2.8 ± 1.7 179 13 ± 9 5
P79R 0.31 ± 0.08 0.95 ± 0.4 90 21 ± 12 3
D80G 0.2 ± 0.04 no pot. 0 14 ± 3 6
D81A 0.29 ± 0.08 7.2 ± 3.8 195 78 ± 24 4
D84A 0.13 ± 0.03 0.56 ± 0.32 50 350 ± 170 4
D91A 0.25 ± 0.09 5.1 ± 3.0 148 38 ± 16 3
N102D 0.9 ± 0.2 0.61 ± 0.2 160 90 ± 31 3
F108A 0.07 ± 0.03 0.35 ± 0.14 400 20 ± 5 4
E110A 0.34 ± 0.06 2.92 ± 0.95 180 395 ± 110 4
T112A 0.12 ± 0.05 0.42 ± 0.06 260 no inhib. 5
E157A n.f. 10
F159Y 0.1 ± 0.04 0.86 ± 0.17 280 14 ± 7 3
E165A n.f. 10
E169A 0.27 ± 0.03 3.4 ± 2.1 130 45 ± 23 3
F207Y 0.55 ± 0.08 0.49 ± 0.12 280 87 ± 34 3
R271K 2.3 ± 0.5 1.2 ± 0.6 200 20 ± 9 4

EC50 values for glycine were determined at a holding potential of −70 mV. Zn2+ modulation was investigated using a glycine concentration corresponding to the respective EC25 value. From the resulting effect-response curves we operationally estimated apparent EC50 and IC50 values for Zn2+ potentiation and inhibition, respectively. Values are means ± s.d. of n determinations. n.f., nonfunctional; max. pot., maximal potentiation; no pot., no potentiation; no inhib., no inhibition.

In an attempt to delineate additional residues involved in Zn2+ modulation, we introduced several substitutions in the vicinity of D80. In most cases (Y78F, P79R and D81A), these substitutions did not drastically alter Zn2+ modulation or glycine affinity (Table 2). One mutant (D84A) showed a decreased Zn2+ potentiation of glycine currents, although the EC50 values for glycine and Zn2+ were only modestly changed (Table 2). Substitution of threonine 112 by alanine (T112A), which results in an marginal increase in glycine affinity (Maksay et al. 1999), was insensitive to Zn2+ inhibition even at concentrations as high as 1 mM (Fig. 2B). In addition, inhibition by Ni2+, which inhibits α1 GlyR currents in a fashion resembling that of Zn2+ (Laube et al. 1995a), was abolished even when tested at concentrations as high as 1 mM (data not shown). Substitution of several side chains in the vicinity of residues involved in agonist binding (Vandenberg et al. 1992; Schmieden et al. 1993), i.e. the regions around positions 160 and 200 of the α1 subunit (mutants F159Y, E169A, F207Y) failed to alter Zn2+ modulation, although substitution of two glutamate residues at positions 157 and 165 resulted in a loss of the glycine response (Table 2). Substitution of aspartate 84 (D84A), which also affects potentiation, and of glutamate 110 (E110A) produced glycine currents indistinguishable from wild-type; however, Zn2+ inhibition was about 15-fold reduced. Collectively these data indicate that negatively charged residues in the extracellular N-terminal region, i.e. aspartates 80 and 84, are essential for high-affinity Zn2+ potentiation, whereas inhibition by Zn2+ requires threonine 112 and, to some extent, aspartate 84 and glutamate 110.

As the D80G substitution produced a complete loss of Zn2+ activation, we examined single-channel events in the absence and presence of Zn2+ after expression of the α1D80G cDNA in HEK 293 cells (Fig. 4D and E). For the patch shown in Fig. 4, the distribution of closed times in the presence of 3 μm glycine was fitted by four exponentials. It can be seen that the mutation had no major effect on the distribution of open, burst and closed times (Table 1 and Fig. 4E–J). In addition, the burst durations and the exponential densities of the time constants in the absence and presence of Zn2+ for the D80G substitution were rather similar to the values for α1 wild-type receptors, confirming a selective loss of Zn2+ potentiation. This result supports the idea that the potentiating effect of Zn2+ is in part mediated via charge neutralization of the γ-carboxylate of aspartate 80.

To unravel whether the loss of Zn2+ potentiation is a specific consequence of the D80G substitution, we tested the effect of another positive modulator of the GlyR, i.e. ethanol. Ethanol potentiates glycine-induced currents at a concentration of 100 mM; this has been attributed to residues located in the transmembrane regions (Mihic et al. 1997; Ye et al. 1998). Both in the presence of potentiating (5 μm) and inhibitory (50 μm) Zn2+ concentrations, 100 mM ethanol produced potentiation of glycine-activated currents in both the α1 wild-type GlyR and the α1D80G mutant (Fig. 4C). This indicates that the effects of Zn2+ and ethanol are additive, and that mutation of D80 selectively alters Zn2+ potentiation. Thus, our data suggest that ethanol and Zn2+ act at different binding sites.

DISCUSSION

This study describes an electrophysiological approach to elucidate the mechanism and molecular determinants of Zn2+ modulation of the recombinant α1 GlyR. By analysing the response properties of the principal agonist glycine and the partial agonist taurine at the whole-cell and single-channel levels, we found that potentiation of glycine currents by Zn2+ is caused primarily by an increase in channel open probability and burst duration, whereas Zn2+ inhibition is due to a reduction of these parameters. Our mutational analysis indicates that distinct residues in the N-terminal extracellular domain of the GlyR α1 subunit are crucial for the positive and negative effects of Zn2+. This corroborates the previously predicted existence of separate high- and low-affinity Zn2+ binding sites and establishes Zn2+ as a dual allosteric modulator of the GlyR.

Mechanism of reversible Zn2+ modulation of glycine currents

The present findings and those from our previous work (Laube et al. 1995a) are consistent with the idea that Zn2+ modulation of the GlyR is mediated by sites which affect neurotransmitter binding and/or channel gating. Dose- response analysis revealed a strong dependence of the EC50 values of both glycine and taurine on Zn2+ concentration (Laube et al. 1995a; Lynch et al. 1998). In contrast, inhibition by the competitive antagonist strychnine was not altered in the presence of Zn2+. In additon, Zn2+ does not appear to affect ion permeation through the channel because there was no change in the unitary current amplitude and the relative abundance of subconductance states. Thus, Zn2+ must affect agonist binding/unbinding and/or channel opening/closing reactions. Here, we used different approaches to discriminate between these alternatives at both potentiating and inhibitory Zn2+ concentrations. First, we compared the effects of Zn2+ under whole-cell and single-channel recording conditions, and second, we used a partial agonist in an attempt to further separate effects on agonist binding from effects on channel gating.

Theoretical assumptions

In principle, several mechanisms could potentiate receptor function within the framework of a sequential agonist binding-channel activation scheme (del Castillo & Katz, 1957). In an attempt to characterize Zn2+ effects on the kinetics of α1 GlyRs, we fitted our experimental data to the gating model shown in Fig. 5A. This model was based on the following considerations. (i) Since the α1 GlyR is a homo-oligomeric receptor, we assumed that its different agonist binding sites are identical. (ii) In the absence of detailed kinetic studies on the mechanism of GlyR gating (see also Twyman & Macdonald, 1991), the high Hill coefficients reported by different investigators (n = 2.5-4.5; Schmieden et al. 1993; Bormann et al. 1993; Lewis et al. 1998) were taken as evidence for occupation of at least three agonist binding sites being required for efficient opening. This assumption is also consistent with the quarternary structure of the adult-type GlyR which is composed of three α1 and two β subunits (Kuhse et al. 1993). Accordingly, activation of the GlyR (R) can be formally described as a sequential binding of three agonist molecules (An; n = 3), followed by channel gating from the liganded closed (A3R) to an open (A3R*) state. However, we are aware that the model prediction of only one open state might be an oversimplification since three open time components are present (see Fig. 3). As the multiple agonist binding sites were assumed to have the same affinity (K) for agonist, unitary binding constants were used for analysing the mechanism of Zn2+ action. According to Colquhoun & Hawkes (1981), the equilibrium constant for channel opening (E) is defined by the quotient of the actual opening and closing rate constants (β/α). Continuous exposure to agonist might cause receptor desensitization. However, under our conditions this seemed not to be relevant, since desensitization of the GlyR in oocytes (i) is slow, (ii) was not altered in the presence of Zn2+ (B. Laube, unpublished observations), and (iii) requires higher concentrations of agonist than used for single-channel recording. These assumptions are consistent with our findings and the five-state model used by Chang & Weiss (1999) for GABAC receptor activation which, like the α1 GlyR, is composed of five identical subunits and shows only little desensitisation. We therefore considered the simple receptor activation model shown in Fig. 5a appropriate for further analysis.

Mechanism of Zn2+ potentiation

When evaluating the effect of Zn2+ on single-channel events induced by low concentrations of glycine or taurine, Zn2+ was found to increase the open probability induced by either 3 μm glycine or 30 μm taurine. This is consistent with data from whole-cell experiments (Laube et al. 1995a) and binding studies (Lynch et al. 1998), where Zn2+ decreased the agonist binding affinity of the receptor. As changes in either agonist affinity or channel opening efficacy can alter the EC50 values of agonists (see Colquhoun & Farrant, 1993), we calculated open time and closed time distributions to obtain estimates of rate constants by analysing the apparent single-channel kinetics of the recombinant GlyR (see Methods). Open time distributions of glycine-gated currents were well fitted by a triple-exponential function, whereas closed time distributions could be described by four exponential components. This is in good agreement with GlyR single-channel recordings obtained from different preparations (Takahashi et al. 1992; Bormann et al. 1993). Zn2+ did not appear to change the apparent intraburst kinetics because there was no significant change in the duration of gaps within bursts. Twyman & Macdonald (1991) have shown that the relative contributions of the burst duration constants of native GlyRs are dependent on the concentration of agonist, whereas time constants are not affected. We found remarkable changes of both parameters in the presence of Zn2+. The observed overall mean number of openings per burst was 11.2 ± 3.8 and 30 ± 7.6 in the absence and presence of 5 μm Zn2+, respectively. Estimates of the rate constant value k-1 obtained from analysis of transitions within bursts in the absence and presence of 5 μm Zn2+ resulted in values which differ by a factor of 2–3 (about 200 and 70 s−1, respectively). However, the apparent individual opening (β) and closing (α) rate constants seemed not to be affected in the presence of 5 μm Zn2+ (for β in the range 3000–4000 s−1 and for α in the range 250–400 s−1). This indicates that in the presence of potentiating Zn2+ concentrations gating is only marginally affected. Moreover, the calculated 3-fold decrease in the dissociation rate constant k-1 of glycine in the presence of 5 μm Zn2+ is in agreement with the observed increase in the affinity for glycine. We therefore conclude that the potentiation of glycine currents observed in the presence of low concentrations of Zn2+ is primarily due to a slowing of agonist dissociation.

Mechanism of Zn2+ inhibition

Our analysis of the inhibitory effects of Zn2+ revealed two types of GlyR channel antagonism. At Zn2+ concentrations < 100 μm, inhibition was overcome by high agonist concentrations, and coapplication of Zn2+ caused only parallel shifts of the glycine dose-response curves to higher glycine concentrations (Laube et al. 1995a). In contrast, Zn2+ concentrations > 100 μm also reduced the maximal current response. Since glycine may chelate Zn2+, we calculated the free amounts of glycine and Zn2+ present in the solutions; complexation values were taken from Grenstine & Winitz (1961). Notably, at 3 μm glycine about 99% of the Zn2+ is present in free form. Accordingly, Zn2+ cannot merely act by chelating glycine. This is consistent with α1 subunit mutants displaying high or low affinity for glycine showing unaltered Zn2+ responses. Single-channel recording in the presence of different Zn2+ concentrations revealed no changes in main conductance state compared with values found in previous studies (Takahashi et al. 1992; Bormann et al. 1993). Also, Zn2+ did not change the linear dependence of glycine currents on membrane potential, providing an argument against a direct voltage-dependent block of the GlyR channel at higher metal ion concentrations. This suggests that the dual effect of Zn2+ inhibition may be mediated via the same or similar mechanisms.

To define the site of action of inhibitory concentrations of Zn2+, we measured single-channel events induced by 3 μm glycine in the absence and presence of 50 and 500 μm Zn2+. Consistent with the increase in the EC50 for glycine seen in whole-cell experiments (Laube et al. 1995a) and binding studies (Lynch et al. 1998), the open probability of channel opening was decreased in the presence of high concentrations of Zn2+. Calculation of the dissociation rate constant for glycine indicates that higher concentrations of Zn2+ have no further effect on k-1 (∼50 s−1) in comparison to that seen in the presence of 5 μm Zn2+. Rather, high concentrations of Zn2+ (50 μm) impaired the efficacy of gating as indicated by a reduction in the mean channel open time that results from a 6-fold increased closing rate constant α (2500 s−1). We therefore conclude that higher concentrations of Zn2+ primarily affect gating of the GlyR channel.

In conclusion, our estimates of the individual rate constants α and β, as well as of the resulting apparent equilibrium constant of channel opening (E), indicate that potentiating concentrations of Zn2+ have only a modest effect on channel gating but strongly enhance glycine binding by decreasing the agonist dissociation rate constant. In contrast, inhibitory concentrations of Zn2+ mainly affect channel gating by increasing α, thus producing a decrease in E.

Zn2+ modulation of partial agonist responses

Results similar to but more complex than those obtained with glycine were also found when analysing single-channel events induced by the partial agonist taurine. Although glycine- and taurine-activated single-channel currents had the same unitary conductances, their kinetic properties were significantly different. In the absence of Zn2+, the estimated E values were in the range 10–20 and 1–4 for glycine and taurine, respectively, indicating that taurine is only a low-efficacy agonist (see also Lewis et al. 1998). Notably, however, Zn2+ increased the maximal current response to taurine ∼2-fold; this is in contrast to our results obtained with glycine, where Zn2+ did not increase maximal currents. This can be explained by analysing our single-channel data according to the model shown in Fig. 5A. When estimating the rate constant k-1 for taurine in the absence and presence of 5 μm Zn2+, values of ∼400 and ∼200 s−1, respectively, were found. This reduction by a factor of 2 is similar to that observed with glycine and shows that taurine dissociation is also slowed by potentiating concentrations of Zn2+. In addition, and in contrast to the results with glycine, we found significant differences in the kinetics of taurine gating that reflect an increase in β (900 vs. 1800 s−1). The observed changes in burst frequency and the substantial lengthening of the apparent burst duration in the presence of 5 μm Zn2+ (Table 1) indicate a taurine-specific alteration of gating by 5 μm Zn2+. Analysis of taurine-gated single channels in the presence of high concentrations of Zn2+ proved very difficult due to the low frequency of opening events. Consequently, only data obtained in the presence of potentiating Zn2+ concentrations could be evaluated. Collectively, our results are consistent with low concentrations of Zn2+ both slowing dissociation of and facilitating gating by the partial agonist taurine.

Point mutations selectively abolish potentiation or inhibition by Zn2+

Potentiation of α1 GlyRs by Zn2+ was voltage independent and not affected by decreasing the pH, suggesting that histidines are not involved in co-ordinating Zn2+ ions for potentiation. Inhibition by Zn2+ was also voltage independent but impaired by decreasing the pH. This suggests that residues in the channel forming M2 region are not involved in co-ordinating Zn2+ ions but histidines might play a role for the inhibitory effect of Zn2+. In addition, the site of Zn2+ action seems to be distinct from the agonist binding site because the amino acid substitutions F159Y and R271K, which drastically alter the EC50 values of glycine, had little effect on Zn2+ modulation. Our mutagenesis experiments identified two residues (aspartate 80 and threonine 112) in the extracellular N-terminal region of the GlyR α1 subunit, whose substitution produced a selective loss of potentiation and inhibition, respectively. The structural modifications resulting from these substitutions seem to be discrete, since responses to glycine and channel properties were indistingishable from those of wild-type receptors. Residue D80 seems to be specifically implicated in Zn2+ potentiation as ethanol potentiation was not altered in the D80G mutant, indicating that the potentiating effects of Zn2+ and ethanol are mediated by different sites (or mechanisms). Notably, high Zn2+ concentrations caused neither shifts in dose- response curves nor a reduction of glycine-evoked currents in the T112A mutant. Thus, the complete loss of Zn2+ inhibition in T112A receptors across a wide range of Zn2+ concentrations is consistent with this residue being part of an inhibitory Zn2+ subsite. However, at present we cannot exclude the possibility that the D80G and T112A mutations affect Zn2+ potentiation and inhibition by conformational changes, as is probably the case with the D84A mutant, where both the potentiating and inhibitory effects of Zn2+ were altered. Indeed, the T112A substitution as well as mutations of neighbouring residues have recently been found to directly cause modest increases in agonist affinity (Schmieden et al. 1999).

During the preparation of this manuscript, Lynch et al. (1998) also reported a loss of Zn2+ potentiation of glycine-induced currents upon substituting residue D80 in the α1 subunit of the GlyR. In addition, these authors found an impairment of Zn2+ potentiation when introducing substitutions in the loop connecting transmembrane domains 1 and 2 of the α1 subunit. As the respective intracellular residues are unlikely to bind extracellularly applied Zn2+, it was concluded that Zn2+ potentiation of the GlyR is mediated via indirect allosteric mechanisms. However, our data indicate that potentiation by Zn2+ is likely to involve direct effects on agonist binding.

A schematic model of Zn2+ action

This study confirms the proposal that potentiation and inhibition of the GyR by Zn2+ are mediated by at least two distinct Zn2+ binding sites which differ in their concentration dependence and mechanisms of action (Laube et al. 1995a; Lynch et al. 1998). Accordingly, Zn2+ has multiple macroscopic effects on GlyR channels which can be formally explained by changes in some of the microscopic constants of a sequential agonist binding and channel gating scheme. The schematic model of Zn2+ action shown in Fig. 5 proposes that (1) potentiation of glycine currents results from an increase in agonist affinity that reflects a decrease in agonist dissociation rate(s) k-1; and (2), at higher Zn2+ concentrations, a voltage-independent block is caused by a decrease in the efficacy of channel opening (Fig. 5a). At the molecular level, these effects of Zn2+ can be attributed to the high- and low-affinity Zn2+ binding sites defined by residues D80 and T112, respectively (Fig. 5B).

With the partial agonist taurine, potentiating concentrations of Zn2+ increased not only agonist affinity (1), but in addition the co-operativity of taurine gating, due to an altered Hill slope. We attribute this additional effect to an increase in β in the presence of Zn2+. Indeed, Hill coefficients of taurine activation of the α1 GlyR consistently were increased in the presence of the metal ion and were similar to those seen with the full agonist glycine (n values of 2.22 ± 0.3 compared with 1.66 ± 0.2 in the absence of Zn2+). Our data might also be explained by a sequential gating model adopted from tetrameric ion channels, i.e. cyclic nucleotide- and glutamate-gated ion channels (Ruiz & Karpen, 1997; Rosenmund et al. 1998). For the latter, differently liganded receptor populations have been shown to contribute fractionally to the total conductance. By analogy, the three burst time constants observed here upon glycine application might correspond to mono-, di- and tri-liganded states of the GlyR (see Fig. 5a) which open with different probabilities and time constants. Accordingly, full occupancy of the receptor should result in the longest open time. With elevated glycine concentrations, the fraction of multi-liganded receptors is predicted to rise, thereby producing a prolongation in mean burst duration. Such a model implies that the observed concentration dependence of burst duration constants (Twyman & Macdonald, 1991) would be the consequence of a change in the relative proportions of the multiple open channel states. Correspondingly, potentiating Zn2+ concentrations should stabilize the fully liganded receptor, thus resulting in the observed increase in mean burst time. In the case of the partial agonist taurine, only two burst time populations were detected in the absence of Zn2+, suggesting that taurine may only partially occupy the α1 GlyR. In the presence of Zn2+, the slowed dissociation of taurine might allow saturation of all agonist binding sites, which becomes apparent in a prolongation of the mean burst time, the occurrence of a third burst time constant (which was seen here only in one out of three patches; see Table 1) and an increase in co-operativity. Again, this conclusion is consistent with both agonist binding and, upon binding of partial agonists, channel opening being modulated via the same high-affinity site defined by aspartate 80 (Fig. 5B). We therefore suggest a common mechanism for Zn2+ potentiation of GlyR currents elicited by full and partial agonists, which may affect both agonist affinity and co-operativity via allosteric conformational transitions (Changeux & Edelstein, 1998). It should, however, be emphasized that our data cannot exclude the existence of an alternative transduction pathway for taurine, as proposed by Lynch et al. (1998). In addition, recent data suggesting that the partial agonism of taurine may be due to self-inhibition (Schmieden et al. 1999) also may be indicative of a more complex interaction of taurine and the D80 high-affinity Zn2+ binding site.

Implications for the physiological role of Zn2+ modulation

Zn2+ is one of the few potent allosteric modulators of the GlyR that increases its channel open probability in a manner consistent with an enhanced affinity of the receptor for glycine. An important question is whether the modulatory effects of Zn2+ are likely to occur in vivo. Assuming that the time course of glycine receptor-mediated synaptic currents is determined by the channel burst length, as found for other neurotransmitter receptors (Segal & Barker, 1984), evoked release of Zn2+ from its synaptic vesicle storage sites should substantially slow the decay of glycine receptor-mediated synaptic currents. In the presence of non-saturating concentrations of neurotransmitter, an increase in glycinergic synaptic currents could in addition occur. However, several lines of evidence indicate that upon presynaptic stimulation the peak concentration of neurotransmitter in the synaptic cleft is likely to saturate postsynaptic receptors. In this case, low concentrations of Zn2+ should not alter the maximal response to glycine. Due to transmitter overspill (Clements, 1996), however, submaximal glycine concentrations may be present at neighbouring synapses as well as at extrasynaptic GlyRs; there Zn2+ might potently reinforce glycinergic inhibition. This leads us to speculate that Zn2+ might have a neuromodulatory function in particular for tonic inhibitory control mediated by glycine or taurine, an endogenous inhibitory amino acid thought to be implicated in developmental and/or trophic functions (Flint et al. 1998). At higher Zn2+ concentrations generated upon repetitive release of synaptic Zn2+, even direct inhibition of glycinergic transmission may occur. These modulatory actions of Zn2+ may be important for spinal sensory information processing including nociception. Experiments targeting the Zn2+ binding sites identified in this paper in vivo might help to unravel the physiological consequences of such a dual regulation.

Acknowledgments

We thank Dr Christof Grewer for critical reading of the manuscript and M. Baier for secretarial assistance. This research was supported by Deutsche Forschungsgemeinschaft (LA 1086), BIOMED-2 (Contract No. BMH4-GT-97-2374) and Fonds der Chemischen Industrie.

References

  1. Assaf SY, Chung SH. Release of endogenous Zn2+ from brain tissue during activity. Nature. 1984;308:734–738. doi: 10.1038/308734a0. [DOI] [PubMed] [Google Scholar]
  2. Betz H. Structures and function of inhibitory glycine receptors. Quarterly Reviews of Biophysics. 1992;25:381–394. doi: 10.1017/s0033583500004340. [DOI] [PubMed] [Google Scholar]
  3. Bloomenthal AB, Goldwater E, Pritchett DB, Harrison NL. Biphasic modulation of the strychnine-sensitive glycine receptor by zinc. Molecular Pharmacology. 1994;46:1156–1159. [PubMed] [Google Scholar]
  4. Bormann J, Rundström N, Betz H, Langosch D. Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers. EMBO Journal. 1993;12:3729–3737. doi: 10.1002/j.1460-2075.1993.tb06050.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang Y, Weiss DS. Channel opening locks agonist onto the GABAC receptor. Nature Neuroscience. 1999;2:219–233. doi: 10.1038/6313. [DOI] [PubMed] [Google Scholar]
  6. Changeux J-P, Edelstein SJ. Allosteric receptors after 30 years. Neuron. 1998;21:959–980. doi: 10.1016/s0896-6273(00)80616-9. [DOI] [PubMed] [Google Scholar]
  7. Clements JD. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends in Neurosciences. 1996;19:163–171. doi: 10.1016/s0166-2236(96)10024-2. [DOI] [PubMed] [Google Scholar]
  8. Colquhoun D, Farrant M. The binding issue. Nature. 1993;366:510–511. doi: 10.1038/366510b0. [DOI] [PubMed] [Google Scholar]
  9. Colquhoun D, Hawkes AG. On the stochastic properties of single ion channels. Proceedings of the Royal Society. 1981;B 211:205–235. doi: 10.1098/rspb.1981.0003. [DOI] [PubMed] [Google Scholar]
  10. Colquhoun D, Sigworth FJ. Fitting and statistical analysis of single-channel records. In: Sakmann B, Neher E, editors. Single-Channel Recording. New York: Plenum Press; 1995. pp. 483–587. [Google Scholar]
  11. Cuajungco MP, Lees GJ. Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiology of Disease. 1997;4:137–169. doi: 10.1006/nbdi.1997.0163. [DOI] [PubMed] [Google Scholar]
  12. Danscher G. Exogenous selenium in the brain. Histochemistry. 1982;76:281–293. doi: 10.1007/BF00543951. [DOI] [PubMed] [Google Scholar]
  13. del Castillo J, Katz B. Interaction at endplate receptors between different choline derivatives. Proceedings of the Royal Society. 1957;B 146:339–356. doi: 10.1098/rspb.1957.0018. [DOI] [PubMed] [Google Scholar]
  14. Fisher JL, Macdonald RL. The role of an α subtype M2-M3 His in regulating inhibition of GABAA receptor current by zinc and other divalent cations. Journal of Neuroscience. 1998;18:2944–2953. doi: 10.1523/JNEUROSCI.18-08-02944.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Flint AC, Liu X, Kriegstein AR. Nonsynaptic glycine receptor activation during early neocortical development. Neuron. 1998;20:43–53. doi: 10.1016/s0896-6273(00)80433-x. [DOI] [PubMed] [Google Scholar]
  16. Frederickson CJ. Neurobiology of zinc and zinc-containing neurons. International Review of Neurobiology. 1989;31:145–238. doi: 10.1016/s0074-7742(08)60279-2. [DOI] [PubMed] [Google Scholar]
  17. Gormann CM, Gies RD, Mccray G. Transient production of proteins using an adenovirus transformed cell line. DNA and Protein Engineering Techniques. 1990;2:3–10. [Google Scholar]
  18. Grenstine JP, Winitz M. Chemistry of the Amino Acids. Vol. 1. New York, London: Wiley; 1961. [Google Scholar]
  19. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Archiv. 1981;391:85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  20. Horenstein J, Akabas MH. Location of a high affinity zinc binding site in the channel of α1β1γ-aminobutyric acidA receptors. Molecular Pharmacology. 1998;53:870–877. [PubMed] [Google Scholar]
  21. Kuhse J, Laube B, Magalei D, Betz H. Assembly of the inhibitory glycine receptor: identification of amino acid sequence motifs governing subunit stoichiometry. Neuron. 1993;11:1049–1056. doi: 10.1016/0896-6273(93)90218-g. [DOI] [PubMed] [Google Scholar]
  22. Langosch D, Laube B, Rundström N, Schmieden V, Bormann J, Betz H. Increased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia. EMBO Journal. 1994;13:4223–4228. doi: 10.1002/j.1460-2075.1994.tb06742.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Laube B, Betz H. Purification and heterologous expression of inhibitory glycine receptors. Methods in Enzymology. 1998;294:260–273. doi: 10.1016/s0076-6879(99)94016-8. [DOI] [PubMed] [Google Scholar]
  24. Laube B, Hirai H, Sturgess M, Betz H, Kuhse J. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron. 1997;18:493–503. doi: 10.1016/s0896-6273(00)81249-0. [DOI] [PubMed] [Google Scholar]
  25. Laube B, Kuhse J, Rundström N, Kirsch J, Schmieden V, Betz H. Modulation by zinc ions of native rat and recombinant human inhibitory glycine receptors. The Journal of Physiology. 1995a;483:613–619. doi: 10.1113/jphysiol.1995.sp020610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laube B, Langosch D, Betz H, Schmieden V. Hyperekplexia mutations of the glycine receptor unmask the inhibitory subsite for β-amino-acids. NeuroReport. 1995b;6:897–900. doi: 10.1097/00001756-199504190-00018. [DOI] [PubMed] [Google Scholar]
  27. Lewis TM, Sivilotti LG, Colquhoun D, Gardiner RM, Schöpfer R, Rees M. Properties of human glycine receptors containing the hyperekplexia mutation α1(K276E), expressed in Xenopus oocytes. The Journal of Physiology. 1998;507:25–40. doi: 10.1111/j.1469-7793.1998.025bu.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lynch JW, Jacques P, Pierce KD, Schofield PR. Zinc potentiation of the glycine receptor chloride channel is mediated by allosteric pathways. Journal of Neurochemistry. 1998;71:2159–2168. doi: 10.1046/j.1471-4159.1998.71052159.x. [DOI] [PubMed] [Google Scholar]
  29. Maksay G, Laube B, Betz H. Selective blocking effects of tropisetron and atropine on recombinant human glycine receptor-ionophores. Journal of Neurochemistry. 1999;73:802–806. doi: 10.1046/j.1471-4159.1999.0730802.x. [DOI] [PubMed] [Google Scholar]
  30. Mihic SJ, Ye Q, Wick M, Koltchine VV, Finn SE, Krasowski MD, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, Harris RA, Harrison NL. Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature. 1997;389:385–389. doi: 10.1038/38738. [DOI] [PubMed] [Google Scholar]
  31. Perez-Clausell J, Danscher G. Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study. Brain Research. 1985;337:91–98. doi: 10.1016/0006-8993(85)91612-9. [DOI] [PubMed] [Google Scholar]
  32. Rajendra S, Lynch JW, Pierce KD, French CR, Barry PH, Schofield PR. Mutation of a single amino acid in the human glycine receptor transforms β-alanine and taurine from agonists into competitive antagonists. Neuron. 1995;14:169–175. doi: 10.1016/0896-6273(95)90251-1. [DOI] [PubMed] [Google Scholar]
  33. Rosenmund C, Stern-Bach Y, Stevens CF. The tetrameric structure of a glutamate receptor channel. Science. 1998;280:1596–1599. doi: 10.1126/science.280.5369.1596. [DOI] [PubMed] [Google Scholar]
  34. Ruiz M, Karpen JW. Single cyclic nucleotide-gated channels locked in different ligand-bound states. Nature. 1997;389:389–392. doi: 10.1038/38744. [DOI] [PubMed] [Google Scholar]
  35. Schmieden V, Kuhse J, Betz H. Mutation of glycine receptor subunits creates β-alanine receptor responsive to GABA. Science. 1993;262:256–258. doi: 10.1126/science.8211147. [DOI] [PubMed] [Google Scholar]
  36. Schmieden V, Kuhse J, Betz H. A novel domain of the inhibitory glycine receptor determining antagonist efficacies: further evidence for partial agonism resulting from self-inhibition. Molecular Pharmacology. 1999;56:464–472. doi: 10.1124/mol.56.3.464. [DOI] [PubMed] [Google Scholar]
  37. Segal M, Barker JL. Rat hippocampal neurons in culture: voltage-clamp analysis of inhibitory connections. Journal of Neurophysiology. 1984;52:469–487. doi: 10.1152/jn.1984.52.3.469. [DOI] [PubMed] [Google Scholar]
  38. Sigworth FJ, Sine SM. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophysical Journal. 1987;52:1047–1054. doi: 10.1016/S0006-3495(87)83298-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Smart TG, Constanti A. Differential effect of zinc on the vertebrate GABAA-receptor complex. British Journal of Pharmacology. 1982;39:267–274. doi: 10.1111/j.1476-5381.1990.tb12984.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smart TG, Xie X, Krishek BJ. Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Progress in Neurobiology. 1994;42:393–441. doi: 10.1016/0301-0082(94)90082-5. [DOI] [PubMed] [Google Scholar]
  41. Takahashi T, Momiyama A, Hirai K, Hishinuma F, Akagi H. Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron. 1992;9:1155–1161. doi: 10.1016/0896-6273(92)90073-m. [DOI] [PubMed] [Google Scholar]
  42. Twyman RE, Macdonald RL. Kinetic properties of the glycine receptor main- and sub-conductance states of mouse spinal cord neurones in culture. The Journal of Physiology. 1991;435:303–331. doi: 10.1113/jphysiol.1991.sp018512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vallee BL, Falschuk KH. The biochemical basis of zinc physiology. Physiological Reviews. 1993;73:79–118. doi: 10.1152/physrev.1993.73.1.79. [DOI] [PubMed] [Google Scholar]
  44. Vandenberg RJ, Handfort CA, Schofield PR. Distinct agonist- and antagonist-binding sites on the glycine receptor. Neuron. 1992;9:491–496. doi: 10.1016/0896-6273(92)90186-h. [DOI] [PubMed] [Google Scholar]
  45. Wang TL, Hackam A, Guggino WB, Cutting GR. A single histidine residue is essential for zinc inhibition of GABA ρ1 receptors. Journal of Neuroscience. 1995;15:7684–7691. doi: 10.1523/JNEUROSCI.15-11-07684.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wooltorton JR, Mcdonald BJ, Moss SJ, Smart TG. Identification of a zinc binding site on the murine GABAA receptor complex: dependence on the second transmembrane domain of β subunits. The Journal of Physiology. 1997;505:633–640. doi: 10.1111/j.1469-7793.1997.633ba.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ye Q, Koltchine VV, Mihic SJ, Mascia MP, Wick MJ, Finn SE, Harrison NL, Harris RA. Enhancement of glycine receptor function by ethanol is inversely correlated with molecular volume at position α267. Journal of Biological Chemistry. 1998;273:3314–3319. doi: 10.1074/jbc.273.6.3314. [DOI] [PubMed] [Google Scholar]
  48. Zarbin MA, Wamsley JK, Kuhar MJ. Glycine receptor: light microscopic autoradiographic localization with [3H]strychnine. Journal of Neuroscience. 1981;1:532–547. doi: 10.1523/JNEUROSCI.01-05-00532.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES