Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jul 1;99(1 Pt 2):63s–69s. doi: 10.1083/jcb.99.1.63s

Cytoskeleton and integration of cellular function in cells of higher plants

S C Tiwari, S M Wick, R E Williamson, B E Gunning
PMCID: PMC2275574  PMID: 6540265

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Busby C. H., Gunning B. Observations on pre-prophase bands of microtubules in uniseriate hairs, stomatal complexes of sugar cane, and Cyperus root meristems. Eur J Cell Biol. 1980 Jun;21(2):214–223. [PubMed] [Google Scholar]
  2. Coluccio L. M., Tilney L. G. Under physiological conditions actin disassembles slowly from the nonpreferred end of an actin filament. J Cell Biol. 1983 Nov;97(5 Pt 1):1629–1634. doi: 10.1083/jcb.97.5.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Euteneuer U., Jackson W. T., McIntosh J. R. Polarity of spindle microtubules in Haemanthus endosperm. J Cell Biol. 1982 Sep;94(3):644–653. doi: 10.1083/jcb.94.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hardham A. R., Gunning B. E. Structure of cortical microtubule arrays in plant cells. J Cell Biol. 1978 Apr;77(1):14–34. doi: 10.1083/jcb.77.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hepler P. K., Jackson W. T. Isopropyl N-phenylcarbamate affects spindle microtubule orientation in dividing endosperm cells of Haemanthus katherinae Baker. J Cell Sci. 1969 Nov;5(3):727–743. doi: 10.1242/jcs.5.3.727. [DOI] [PubMed] [Google Scholar]
  6. Hoch H. C., Staples R. C. Visualization of actin in situ by rhodamine-conjugated phalloin in the fungus Uromyces phaseoli. Eur J Cell Biol. 1983 Nov;32(1):52–58. [PubMed] [Google Scholar]
  7. Howard R. J. Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci. 1981 Apr;48:89–103. doi: 10.1242/jcs.48.1.89. [DOI] [PubMed] [Google Scholar]
  8. Kersey Y. M., Hepler P. K., Palevitz B. A., Wessells N. K. Polarity of actin filaments in Characean algae. Proc Natl Acad Sci U S A. 1976 Jan;73(1):165–167. doi: 10.1073/pnas.73.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Little M., Ludueña R. F., Keenan R., Asnes C. F. Tubulin evolution: two major types of alpha-tubulin. J Mol Evol. 1982;19(1):80–86. doi: 10.1007/BF02100226. [DOI] [PubMed] [Google Scholar]
  10. Little M., Ludueña R. F., Langford G. M., Asnes C. F., Farrell K. Comparison of proteolytic cleavage patterns of alpha-tubulins and beta-tubulins from taxonomically distant species. J Mol Biol. 1981 Jun 15;149(1):95–107. doi: 10.1016/0022-2836(81)90262-x. [DOI] [PubMed] [Google Scholar]
  11. Morejohn L. C., Fosket D. E. Higher plant tubulin identified by self-assembly into microtubules in vitro. Nature. 1982 Jun 3;297(5865):426–428. doi: 10.1038/297426a0. [DOI] [PubMed] [Google Scholar]
  12. Pollard T. D., Mooseker M. S. Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J Cell Biol. 1981 Mar;88(3):654–659. doi: 10.1083/jcb.88.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pollard T. D., Selden S. C., Maupin P. Interaction of actin filaments with microtubules. J Cell Biol. 1984 Jul;99(1 Pt 2):33s–37s. doi: 10.1083/jcb.99.1.33s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Porter K. R. The cytomatrix: a short history of its study. J Cell Biol. 1984 Jul;99(1 Pt 2):3s–12s. doi: 10.1083/jcb.99.1.3s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Seagull R. W., Heath I. B. The effects of tannic acid on the in vivo preservation of microfilaments. Eur J Cell Biol. 1979 Dec;20(2):184–188. [PubMed] [Google Scholar]
  16. Sheetz M. P., Spudich J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature. 1983 May 5;303(5912):31–35. doi: 10.1038/303031a0. [DOI] [PubMed] [Google Scholar]
  17. Wehland J., Willingham M. C., Sandoval I. V. A rat monoclonal antibody reacting specifically with the tyrosylated form of alpha-tubulin. I. Biochemical characterization, effects on microtubule polymerization in vitro, and microtubule polymerization and organization in vivo. J Cell Biol. 1983 Nov;97(5 Pt 1):1467–1475. doi: 10.1083/jcb.97.5.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wick S. M., Duniec J. Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. I. Preprophase band development and concomitant appearance of nuclear envelope-associated tubulin. J Cell Biol. 1983 Jul;97(1):235–243. doi: 10.1083/jcb.97.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wick S. M., Seagull R. W., Osborn M., Weber K., Gunning B. E. Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells. J Cell Biol. 1981 Jun;89(3):685–690. doi: 10.1083/jcb.89.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Williamson R. E., Ashley C. C. Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature. 1982 Apr 15;296(5858):647–650. doi: 10.1038/296647a0. [DOI] [PubMed] [Google Scholar]
  21. Williamson R. E. Cytoplasmic streaming in Chara: a cell model activated by ATP and inhibited by cytochalasin B. J Cell Sci. 1975 May;17(3):655–668. doi: 10.1242/jcs.17.3.655. [DOI] [PubMed] [Google Scholar]
  22. Yamaguchi Y., Nagai R. Motile apparatus in Vallisneria leaf cells. I. Organization of microfilaments. J Cell Sci. 1981 Apr;48:193–205. doi: 10.1242/jcs.48.1.193. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES