Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jul 1;99(1 Pt 2):222s–225s. doi: 10.1083/jcb.99.1.222s

Interactions between glycolytic enzymes and components of the cytomatrix

C Masters
PMCID: PMC2275576  PMID: 6746730

Abstract

Evidence is provided that enzymes absorb to cellular structures in a wide range of tissues. In particular, the interactions between glycolytic enzymes and the microfilaments of the cytoplasm are described. The relevance of these interactions to the compartmentation of carbohydrate metabolism is discussed. Examples are given of the variations in degree of binding during alteration of tissue metabolism and, for individual glycolytic enzymes, during fetal development and differentiation. Overall, these data support the concept that metabolic activities in the cytoplasm have an organized structure. Just as the structural elements of the cytosolic compartment have evolved with the capacity to assemble and disassemble in response to the changing requirements of the organism, so the metabolic elements appear to have evolved a parallel system that provides for the appropriate positioning of an energy-producing sequence in relation to the specific, dynamic requirements of the cytoskeleton.

Full Text

The Full Text of this article is available as a PDF (485.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clarke F. M., Masters C. J. On the association of glycolytic components in skeletal muscle extracts. Biochim Biophys Acta. 1974 Jul 17;358(1):193–207. doi: 10.1016/0005-2744(74)90270-8. [DOI] [PubMed] [Google Scholar]
  2. Karadsheh N. S., Uyeda K. Changes in allosteric properties of phosphofructokinase bound to erythrocyte membranes. J Biol Chem. 1977 Nov 10;252(21):7418–7420. [PubMed] [Google Scholar]
  3. Knull H. R., Taylor W. F., Wells W. W. Insulin effects on brain energy metabolism and the related hexokinase distribution. J Biol Chem. 1974 Nov 10;249(21):6930–6935. [PubMed] [Google Scholar]
  4. Kuter M. R., Masters C. J., Walsh T. P., Winzor D. J. Effect of ionic strength on the interaction between aldolase and actin-containing filaments. Arch Biochem Biophys. 1981 Nov;212(1):306–310. doi: 10.1016/0003-9861(81)90370-2. [DOI] [PubMed] [Google Scholar]
  5. Kuter M. R., Masters C. J., Winzor D. J. Equilibrium partition studies of the interaction between aldolase and myofibrils. Arch Biochem Biophys. 1983 Aug;225(1):384–389. doi: 10.1016/0003-9861(83)90043-7. [DOI] [PubMed] [Google Scholar]
  6. Masters C. J. Interactions between soluble enzymes and subcellular structure. CRC Crit Rev Biochem. 1981;11(2):105–143. doi: 10.3109/10409238109108700. [DOI] [PubMed] [Google Scholar]
  7. Masters C. J. Metabolic control and the microenvironment. Curr Top Cell Regul. 1977;12:75–105. doi: 10.1016/b978-0-12-152812-6.50009-3. [DOI] [PubMed] [Google Scholar]
  8. Masters C. Subcellular localization of isozymes--an overview. Isozymes Curr Top Biol Med Res. 1983;8:1–21. [PubMed] [Google Scholar]
  9. Mowbray J., Moses V. The tentative identification in Escherichia coli of a multienzyme complex with glycolytic activity. Eur J Biochem. 1976 Jun 15;66(1):25–36. doi: 10.1111/j.1432-1033.1976.tb10421.x. [DOI] [PubMed] [Google Scholar]
  10. Sigel P., Pette D. Intracellular localization of glycogenolytic and glycolytic enzymes in white and red rabbit skeletal muscle: a gel film method for coupled enzyme reactions in histochemistry. J Histochem Cytochem. 1969 Apr;17(4):225–237. doi: 10.1177/17.4.225. [DOI] [PubMed] [Google Scholar]
  11. Ureta T. The role of isozymes in metabolism: a model of metabolic pathways as the basis for the biological role of isozymes. Curr Top Cell Regul. 1978;13:233–258. doi: 10.1016/b978-0-12-152813-3.50011-2. [DOI] [PubMed] [Google Scholar]
  12. Walsh T. P., Clarke F. M., Masters C. J. Modification of the kinetic parameters of aldolase on binding to the actin-containing filaments of skeletal muscle. Biochem J. 1977 Jul 1;165(1):165–167. doi: 10.1042/bj1650165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Walsh T. P., Masters C. J., Morton D. J., Clarke F. M. The reversible binding of glycolytic enzymes in ovine skeletal muscle in response to tetanic stimulation. Biochim Biophys Acta. 1981 Jun 11;675(1):29–39. doi: 10.1016/0304-4165(81)90066-0. [DOI] [PubMed] [Google Scholar]
  14. Walsh T. P., Winzor D. J., Clarke F. M., Masters C. J., Morton D. J. Binding of aldolase to actin-containing filaments. Evidence of interaction with the regulatory proteins of skeletal muscle. Biochem J. 1980 Jan 15;186(1):89–98. doi: 10.1042/bj1860089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wilson J. E., Reid S., Masters C. J. A comparative study of the binding of aldolase and glyceraldehyde-3-phosphate dehydrogenase to the human erythrocyte membrane. Arch Biochem Biophys. 1982 May;215(2):610–620. doi: 10.1016/0003-9861(82)90122-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES