Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jul 1;99(1 Pt 2):119s–126s. doi: 10.1083/jcb.99.1.119s

Properties of the 120,000- and 95,000-dalton actin-binding proteins from Dictyostelium discoideum and their possible functions in assembling the cytoplasmic matrix

J Condeelis, M Vahey, J M Carboni, J DeMey, S Ogihara
PMCID: PMC2275594  PMID: 6746725

Abstract

The cell cortex of Dictyostelium amebae contains an actin-rich cytoplasmic matrix. Changes in geometry of this matrix are believed to regulate protrusive activity and motility of the cell cortex. Two actin-binding proteins (120,000 and 95,000 daltons [120K and 95K]) are present in the cell cortex, and their properties, many of which are described here for the first time, suggest that they regulate growth and organization of cortical microfilaments. The 120K protein is a flexible dimer 35 nm in length with a native molecular mass of 241,000. It nucleates the polymerization of actin and crosslinks the filaments to form branched networks like those seen in situ in the cell cortex. The production of a branched network of short crosslinked filaments results in a lattice that would theoretically generate the maximum rigidity with minimum amount of polymer. This sort of lattice would be very useful as a space-filling cytoskeleton capable of resisting deformation. The 120K protein inhibits the actin-stimulated Mg ATPase of myosin. Competition for actin binding between 120K and myosin, the impenetrability of the 120K-actin network to myosin, and the rigidity of actin filaments that are crosslinked by 120K could all contribute to the decrease in the actin-stimulated Mg ATPase of myosin. The properties of 120K are consistent with a role for this protein in regulating the site of actin filament growth and gelation in the cell but not the assembly of actin-containing structures that would participate in force generation by a sliding-filament mechanism involving myosin. The 95K protein is a rigid dimer 40 nm in length with a native molecular mass of between 190,000 and 210,000. Its physical and antigenic properties lead us to conclude that the 95K protein is Dictyostelium alpha-actinin. Unlike 120K, it crosslinks actin filaments into lateral arrays and increases the actin-stimulated Mg ATPase of myosin. Both activities are regulated by Ca2+. The properties of 95K are consistent with a role in organizing actin filaments in the cell into lateral arrays that are capable of efficient interaction with myosin to produce force for cell motility.

Full Text

The Full Text of this article is available as a PDF (973.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa N., Robson R. M., Goll D. E. An improved method for the preparation of alpha-actinin from rabbit striated muscle. Biochim Biophys Acta. 1970 Feb 17;200(2):284–295. doi: 10.1016/0005-2795(70)90172-8. [DOI] [PubMed] [Google Scholar]
  2. Burridge K., Feramisco J. R. Non-muscle alpha actinins are calcium-sensitive actin-binding proteins. Nature. 1981 Dec 10;294(5841):565–567. doi: 10.1038/294565a0. [DOI] [PubMed] [Google Scholar]
  3. Condeelis J. S. Reciprocal interactions between the actin lattice and cell membrane. Neurosci Res Program Bull. 1981 Feb;19(1):83–99. [PubMed] [Google Scholar]
  4. Condeelis J. S., Taylor D. L. The contractile basis of amoeboid movement. V. The control of gelation, solation, and contraction in extracts from Dictyostelium discoideum. J Cell Biol. 1977 Sep;74(3):901–927. doi: 10.1083/jcb.74.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Condeelis J., Vahey M. A calcium- and pH-regulated protein from Dictyostelium discoideum that cross-links actin filaments. J Cell Biol. 1982 Aug;94(2):466–471. doi: 10.1083/jcb.94.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies G. E., Stark G. R. Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci U S A. 1970 Jul;66(3):651–656. doi: 10.1073/pnas.66.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies P., Bechtel P., Pastan I. Filamin inhibits actin activation of heavy meromyosin ATPase. FEBS Lett. 1977 May 15;77(2):228–232. doi: 10.1016/0014-5793(77)80240-8. [DOI] [PubMed] [Google Scholar]
  8. Feramisco J. R., Burridge K. A rapid purification of alpha-actinin, filamin, and a 130,000-dalton protein from smooth muscle. J Biol Chem. 1980 Feb 10;255(3):1194–1199. [PubMed] [Google Scholar]
  9. Gorovsky M. A., Carlson K., Rosenbaum J. L. Simple method for quantitive densitometry of polyacrylamide gels using fast green. Anal Biochem. 1970 Jun;35(2):359–370. doi: 10.1016/0003-2697(70)90196-x. [DOI] [PubMed] [Google Scholar]
  10. Hartwig J. H., Stossel T. P. Structure of macrophage actin-binding protein molecules in solution and interacting with actin filaments. J Mol Biol. 1981 Jan 25;145(3):563–581. doi: 10.1016/0022-2836(81)90545-3. [DOI] [PubMed] [Google Scholar]
  11. Hartwig J. H., Tyler J., Stossel T. P. Actin-binding protein promotes the bipolar and perpendicular branching of actin filaments. J Cell Biol. 1980 Dec;87(3 Pt 1):841–848. doi: 10.1083/jcb.87.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hellewell S. B., Taylor D. L. The contractile basis of ameboid movement. VI. The solation-contraction coupling hypothesis. J Cell Biol. 1979 Dec;83(3):633–648. doi: 10.1083/jcb.83.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jockusch B. M., Isenberg G. Interaction of alpha-actinin and vinculin with actin: opposite effects on filament network formation. Proc Natl Acad Sci U S A. 1981 May;78(5):3005–3009. doi: 10.1073/pnas.78.5.3005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KIELLEY W. W., HARRINGTON W. F. A model for the myosin molecule. Biochim Biophys Acta. 1960 Jul 15;41:401–421. doi: 10.1016/0006-3002(60)90037-8. [DOI] [PubMed] [Google Scholar]
  15. Kobayashi R., Tashima Y. Purification and characterization of an alpha-actinin-like protein from porcine kidney. Biochim Biophys Acta. 1983 Jun 15;745(2):209–216. doi: 10.1016/0167-4838(83)90051-1. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  19. MacLean-Fletcher S. D., Pollard T. D. Viscometric analysis of the gelation of Acanthamoeba extracts and purification of two gelation factors. J Cell Biol. 1980 May;85(2):414–428. doi: 10.1083/jcb.85.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Podlubnaya Z. A., Tskhovrebova L. A., Zaalishtsbvili M. M., Stefanenko G. A. Electron microscopic study of alpha-actinin. J Mol Biol. 1975 Feb 25;92(2):357–359. doi: 10.1016/0022-2836(75)90234-x. [DOI] [PubMed] [Google Scholar]
  21. Pollard T. D., Korn E. D. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem. 1973 Jul 10;248(13):4682–4690. [PubMed] [Google Scholar]
  22. Robson R. M., Goll D. E., Arakawa N., Stromer M. H. Purification and properties of alpha-actinin from rabbit skeletal muscle. Biochim Biophys Acta. 1970 Feb 17;200(2):296–318. doi: 10.1016/0005-2795(70)90173-x. [DOI] [PubMed] [Google Scholar]
  23. Salisbury J. L., Condeelis J. S., Maihle N. J., Satir P. Calmodulin localization during capping and receptor-mediated endocytosis. Nature. 1981 Nov 12;294(5837):163–166. doi: 10.1038/294163a0. [DOI] [PubMed] [Google Scholar]
  24. Shizuta Y., Shizuta H., Gallo M., Davies P., Pastan I. Purification and properties of filamin, and actin binding protein from chicken gizzard. J Biol Chem. 1976 Nov 10;251(21):6562–6567. [PubMed] [Google Scholar]
  25. Siegel L. M., Monty K. J. Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim Biophys Acta. 1966 Feb 7;112(2):346–362. doi: 10.1016/0926-6585(66)90333-5. [DOI] [PubMed] [Google Scholar]
  26. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  27. Stossel T. P., Hartwig J. H. Interactions of actin, myosin, and a new actin-binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis. J Cell Biol. 1976 Mar;68(3):602–619. doi: 10.1083/jcb.68.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Suzuki A., Goll D. E., Singh I., Allen R. E., Robson R. M., Stromer M. H. Some properties of purified skeletal muscle alpha-actinin. J Biol Chem. 1976 Nov 10;251(21):6860–6870. [PubMed] [Google Scholar]
  29. Tyler J. M., Branton D. Rotary shadowing of extended molecules dried from glycerol. J Ultrastruct Res. 1980 May;71(2):95–102. doi: 10.1016/s0022-5320(80)90098-2. [DOI] [PubMed] [Google Scholar]
  30. Wang K. Filamin, a new high-molecular-weight protein found in smooth muscle and nonmuscle cells. Purification and properties of chicken gizzard filamin. Biochemistry. 1977 May 3;16(9):1857–1865. doi: 10.1021/bi00628a015. [DOI] [PubMed] [Google Scholar]
  31. Wolosewick J. J., Porter K. R. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J Cell Biol. 1979 Jul;82(1):114–139. doi: 10.1083/jcb.82.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES