Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jul 1;99(1 Pt 2):144s–151s. doi: 10.1083/jcb.99.1.144s

Cytomatrix in chromatophores

M E Stearns
PMCID: PMC2275595  PMID: 6235232

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos L. A. Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules. J Cell Biol. 1977 Mar;72(3):642–654. doi: 10.1083/jcb.72.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amos W. B. Structure and coiling of the stalk in the peritrich ciliates Vorticella and Carchesium. J Cell Sci. 1972 Jan;10(1):95–122. doi: 10.1242/jcs.10.1.95. [DOI] [PubMed] [Google Scholar]
  3. Beckerle M. C., Porter K. R. Analysis of the role of microtubules and actin in erythrophore intracellular motility. J Cell Biol. 1983 Feb;96(2):354–362. doi: 10.1083/jcb.96.2.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beckerle M. C., Porter K. R. Inhibitors of dynein activity block intracellular transport in erythrophores. Nature. 1982 Feb 25;295(5851):701–703. doi: 10.1038/295701a0. [DOI] [PubMed] [Google Scholar]
  5. Bloom G. S., Luca F. C., Vallee R. B. Widespread cellular distribution of MAP-1A (microtubule-associated protein 1A) in the mitotic spindle and on interphase microtubules. J Cell Biol. 1984 Jan;98(1):331–340. doi: 10.1083/jcb.98.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bloom G. S., Schoenfeld T. A., Vallee R. B. Widespread distribution of the major polypeptide component of MAP 1 (microtubule-associated protein 1) in the nervous system. J Cell Biol. 1984 Jan;98(1):320–330. doi: 10.1083/jcb.98.1.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bloom G. S., Vallee R. B. Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells. J Cell Biol. 1983 Jun;96(6):1523–1531. doi: 10.1083/jcb.96.6.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bouchard P., Penningroth S. M., Cheung A., Gagnon C., Bardin C. W. erythro-9-[3-(2-Hydroxynonyl)]adenine is an inhibitor of sperm motility that blocks dynein ATPase and protein carboxylmethylase activities. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1033–1036. doi: 10.1073/pnas.78.2.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buckley I., Stewart M. Ciliary but not saltatory movements are inhibited by vanadate microinjected into living cultured cells. Cell Motil. 1983;3(2):167–184. doi: 10.1002/cm.970030206. [DOI] [PubMed] [Google Scholar]
  10. Byers H. R., Porter K. R. Transformations in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion. I. A study using whole-cell preparations in stereo high voltage electron microscopy. J Cell Biol. 1977 Nov;75(2 Pt 1):541–558. doi: 10.1083/jcb.75.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cande W. Z., McDonald K., Meeusen R. L. A permeabilized cell model for studying cell division: a comparison of anaphase chromosome movement and cleavage furrow constriction in lysed PtK1 cells. J Cell Biol. 1981 Mar;88(3):618–629. doi: 10.1083/jcb.88.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cande W. Z. Nucleotide requirements for anaphase chromosome movements in permeabilized mitotic cells: anaphase B but not anaphase A requires ATP. Cell. 1982 Jan;28(1):15–22. doi: 10.1016/0092-8674(82)90370-1. [DOI] [PubMed] [Google Scholar]
  13. Cande W. Z., Wolniak S. M. Chromosome movement in lysed mitotic cells is inhibited by vanadate. J Cell Biol. 1978 Nov;79(2 Pt 1):573–580. doi: 10.1083/jcb.79.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Clark T. G., Rosenbaum J. L. Pigment particle translocation in detergent-permeabilized melanophores of Fundulus heteroclitus. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4655–4659. doi: 10.1073/pnas.79.15.4655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Connolly J. A., Kalnins V. I., Cleveland D. W., Kirschner M. W. Intracellular localization of the high molecular weight microtubule accessory protein by indirect immunofluorescence. J Cell Biol. 1978 Mar;76(3):781–786. doi: 10.1083/jcb.76.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dentler W. L., Granett S., Rosenbaum J. L. Ultrastructural localization of the high molecular weight proteins associated with in vitro-assembled brain microtubules. J Cell Biol. 1975 Apr;65(1):237–241. doi: 10.1083/jcb.65.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Euteneuer U., McIntosh J. R. Polarity of midbody and phragmoplast microtubules. J Cell Biol. 1980 Nov;87(2 Pt 1):509–515. doi: 10.1083/jcb.87.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Euteneuer U., McIntosh J. R. Polarity of some motility-related microtubules. Proc Natl Acad Sci U S A. 1981 Jan;78(1):372–376. doi: 10.1073/pnas.78.1.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fey E. G., Capco D. G., Krochmalnic G., Penman S. Epithelial structure revealed by chemical dissection and unembedded electron microscopy. J Cell Biol. 1984 Jul;99(1 Pt 2):203s–208s. doi: 10.1083/jcb.99.1.203s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Forman D. S. Vanadate inhibits saltatory organelle movement in a permeabilized cell model. Exp Cell Res. 1982 Sep;141(1):139–147. doi: 10.1016/0014-4827(82)90076-3. [DOI] [PubMed] [Google Scholar]
  21. Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gitelman S. E., Witman G. B. Purification of calmodulin from Chlamydomonas: calmodulin occurs in cell bodies and flagella. J Cell Biol. 1980 Dec;87(3 Pt 1):764–770. doi: 10.1083/jcb.87.3.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Green L. MECHANISM OF MOVEMENTS OF GRANULES IN MELANOCYTES OF Fundulus heteroclitus. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1179–1186. doi: 10.1073/pnas.59.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Griffith L. M., Pollard T. D. Evidence for actin filament-microtubule interaction mediated by microtubule-associated proteins. J Cell Biol. 1978 Sep;78(3):958–965. doi: 10.1083/jcb.78.3.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Horwitz S. B., Chia G. H., Harracksingh C., Orlow S., Pifko-Hirst S., Schneck J., Sorbara L., Speaker M., Wilk E. W., Rosen O. M. Trifluoperazine inhibits phagocytosis in a macrophagelike cultured cell line. J Cell Biol. 1981 Dec;91(3 Pt 1):798–802. doi: 10.1083/jcb.91.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Johnson K. A., Porter M. E., Shimizu T. Mechanism of force production for microtubule-dependent movements. J Cell Biol. 1984 Jul;99(1 Pt 2):132s–136s. doi: 10.1083/jcb.99.1.132s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jones J. C., Tucker J. B. Microtubule-organizing centres and assembly of the double-spiral microtubule pattern in certain heliozoan axonemes. J Cell Sci. 1981 Aug;50:259–280. doi: 10.1242/jcs.50.1.259. [DOI] [PubMed] [Google Scholar]
  28. Junqueira L. C., Raker E., Porter K. R. Studies on pigment migration in the melanophores of the teleost. Fundulus heteroclitus (L). Arch Histol Jpn. 1974 May;36(5):339–366. doi: 10.1679/aohc1950.36.339. [DOI] [PubMed] [Google Scholar]
  29. Kao K. J., Sommer J. R., Pizzo S. V. Modulation of platelet shape and membrane receptor binding by Ca2+-calmodulin complex. Nature. 1981 Jul 2;292(5818):82–84. doi: 10.1038/292082a0. [DOI] [PubMed] [Google Scholar]
  30. Kim H., Binder L. I., Rosenbaum J. L. The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol. 1979 Feb;80(2):266–276. doi: 10.1083/jcb.80.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kobayashi T., Martensen T., Nath J., Flavin M. Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1313–1318. doi: 10.1016/0006-291x(78)91279-2. [DOI] [PubMed] [Google Scholar]
  32. Levin R. M., Weiss B. Mechanism by which psychotropic drugs inhibit adenosine cyclic 3',5'-monophosphate phosphodiesterase of brain. Mol Pharmacol. 1976 Jul;12(4):581–589. [PubMed] [Google Scholar]
  33. Luby-Phelps K., Porter K. R. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). II. The role of calcium. Cell. 1982 Jun;29(2):441–450. doi: 10.1016/0092-8674(82)90160-x. [DOI] [PubMed] [Google Scholar]
  34. Luby K. J., Porter K. R. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). I. Energy requirements. Cell. 1980 Aug;21(1):13–23. doi: 10.1016/0092-8674(80)90110-5. [DOI] [PubMed] [Google Scholar]
  35. Lynch T. J., Lo S. J., Taylor J. D., Tchen T. T. Characterization of and hormonal effects on subcellular fractions from xanthophores of the goldfish Carassius auratus L. Biochem Biophys Res Commun. 1981 Sep 16;102(1):127–134. doi: 10.1016/0006-291x(81)91498-4. [DOI] [PubMed] [Google Scholar]
  36. Marsland D., Meisner D. Effects of D2O on the mechanism of pigment dispersal in the melanocytes of Fundulus heteroclitus: a pressure-temperature analysis. J Cell Physiol. 1967 Oct;70(2):209–216. doi: 10.1002/jcp.1040700211. [DOI] [PubMed] [Google Scholar]
  37. McIntosh J. R., Euteneuer U. Tubulin hooks as probes for microtubule polarity: an analysis of the method and an evaluation of data on microtubule polarity in the mitotic spindle. J Cell Biol. 1984 Feb;98(2):525–533. doi: 10.1083/jcb.98.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Means A. R., Dedman J. R. Calmodulin--an intracellular calcium receptor. Nature. 1980 May 8;285(5760):73–77. doi: 10.1038/285073a0. [DOI] [PubMed] [Google Scholar]
  39. Mooseker M. S., Tilney L. G. Isolation and reactivation of the axostyle. Evidence for a dynein-like ATPase in the axostyle. J Cell Biol. 1973 Jan;56(1):13–26. doi: 10.1083/jcb.56.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Murphy D. B., Grasser W. A. Intermediate filaments in the cytoskeletons of fish chromatophores. J Cell Sci. 1984 Mar;66:353–366. doi: 10.1242/jcs.66.1.353. [DOI] [PubMed] [Google Scholar]
  42. Murphy D. B., Tilney L. G. The role of microtubules in the movement of pigment granules in teleost melanophores. J Cell Biol. 1974 Jun;61(3):757–779. doi: 10.1083/jcb.61.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Obika M., Lo S. J., Tchen T. T., Taylor J. D. Ultrastructural demonstration of hormone-induced movement of carotenoid droplets and endoplasmic reticulum in xanthophores of the goldfish, Carassius auratus L. Cell Tissue Res. 1978 Jul 10;190(3):409–416. doi: 10.1007/BF00219555. [DOI] [PubMed] [Google Scholar]
  44. Osborn M., Weber K. Damage of cellular functions by trifluoperazine, a calmodulin-specific drug. Exp Cell Res. 1980 Dec;130(2):484–488. doi: 10.1016/0014-4827(80)90033-6. [DOI] [PubMed] [Google Scholar]
  45. Penningroth S. M., Cheung A., Bouchard P., Gagnon C., Bardin C. W. Dynein ATPase is inhibited selectively in vitro by erythro-9-[3-2-(hydroxynonyl)]adenine. Biochem Biophys Res Commun. 1982 Jan 15;104(1):234–240. doi: 10.1016/0006-291x(82)91964-7. [DOI] [PubMed] [Google Scholar]
  46. Pickett-Heaps J. D., Tippit D. H., Porter K. R. Rethinking mitosis. Cell. 1982 Jul;29(3):729–744. doi: 10.1016/0092-8674(82)90435-4. [DOI] [PubMed] [Google Scholar]
  47. Pike M. C., Kredich N. M., Snyderman R. Requirement of S-adenosyl-L-methionine-mediated methylation for human monocyte chemotaxis. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3928–3932. doi: 10.1073/pnas.75.8.3928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Pollard T. D., Selden S. C., Maupin P. Interaction of actin filaments with microtubules. J Cell Biol. 1984 Jul;99(1 Pt 2):33s–37s. doi: 10.1083/jcb.99.1.33s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Porter K. R., McNiven M. A. The cytoplast: a unit structure in chromatophores. Cell. 1982 May;29(1):23–32. doi: 10.1016/0092-8674(82)90086-1. [DOI] [PubMed] [Google Scholar]
  50. Routledge L. M. Calcium-binding proteins in the vorticellid spasmoneme. J Cell Biol. 1978 May;77(2):358–370. doi: 10.1083/jcb.77.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  52. Schliwa M., Bereiter-Hahn J. Pigment movements in fish melanophores: morphological and physiological studies. 3. The effects of colchicine and vinblastine. Z Zellforsch Mikrosk Anat. 1973 Dec 31;147(1):127–148. doi: 10.1007/BF00306604. [DOI] [PubMed] [Google Scholar]
  53. Schliwa M., Euteneuer U. A microtuble-independent component may be involved in granule transport in pigment cells. Nature. 1978 Jun 15;273(5663):556–558. doi: 10.1038/273556a0. [DOI] [PubMed] [Google Scholar]
  54. Schliwa M., Euteneuer U., Herzog W., Weber K. Evidence for rapid structural and functional changes of the melanophore microtubule-organizing center upon pigment movements. J Cell Biol. 1979 Dec;83(3):623–632. doi: 10.1083/jcb.83.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Schliwa M. Stereo high voltage electron microscopy of melanophores. Matrix transformations during pigment movements and the effects of cold and colchicine. Exp Cell Res. 1979 Feb;118(2):323–340. doi: 10.1016/0014-4827(79)90157-5. [DOI] [PubMed] [Google Scholar]
  56. Schliwa M., Weber K., Porter K. R. Localization and organization of actin in melanophores. J Cell Biol. 1981 May;89(2):267–275. doi: 10.1083/jcb.89.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Sheterline P. Trifluoperazine can distinguish between myosin light chain kinase-linked and troponin C-linked control of actomyosin interaction by Ca++. Biochem Biophys Res Commun. 1980 Mar 13;93(1):194–200. doi: 10.1016/s0006-291x(80)80265-8. [DOI] [PubMed] [Google Scholar]
  58. Simons T. J. Vanadate--a new tool for biologists. Nature. 1979 Oct 4;281(5730):337–338. doi: 10.1038/281337a0. [DOI] [PubMed] [Google Scholar]
  59. Smith D. S., Järlfors U., Cameron B. F. Morphological evidence for the participation of microtubules in axonal transport. Ann N Y Acad Sci. 1975 Jun 30;253:472–506. doi: 10.1111/j.1749-6632.1975.tb19223.x. [DOI] [PubMed] [Google Scholar]
  60. Stearns M. E. High voltage electron microscopy studies of axoplasmic transport in neurons: a possible regulatory role for divalent cations. J Cell Biol. 1982 Mar;92(3):765–776. doi: 10.1083/jcb.92.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Stearns M. E., Ochs R. L. A functional in vitro model for studies of intracellular motility in digitonin-permeabilized erythrophores. J Cell Biol. 1982 Sep;94(3):727–739. doi: 10.1083/jcb.94.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Suprenant K. A., Dentler W. L. Association between endocrine pancreatic secretory granules and in-vitro-assembled microtubules is dependent upon microtubule-associated proteins. J Cell Biol. 1982 Apr;93(1):164–174. doi: 10.1083/jcb.93.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Theurkauf W. E., Vallee R. B. Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. J Biol Chem. 1982 Mar 25;257(6):3284–3290. [PubMed] [Google Scholar]
  65. Tilney L. G., Byers B. Studies on the microtubules in heliozoa. V. Factors controlling the organization of microtubules in the Axonemal pattern in Echinosphaerium (Actinosphaerium) nucleofilum. J Cell Biol. 1969 Oct;43(1):148–165. doi: 10.1083/jcb.43.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Tilney L. G. How microtubule patterns are generated. The relative importance of nucleation and bridging of microtubules in the formation of the axoneme of Raphidiophrys. J Cell Biol. 1971 Dec;51(3):837–854. doi: 10.1083/jcb.51.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Tilney L. G. Studies on the microtubules in heliozoa. IV. The effect of colchicine on the formation and maintenance of the axopodia and the redevelopment of pattern in Actinosphaerium nucleofilum (Barrett). J Cell Sci. 1968 Dec;3(4):549–562. doi: 10.1242/jcs.3.4.549. [DOI] [PubMed] [Google Scholar]
  68. Vallee R. Structure and phosphorylation of microtubule-associated protein 2 (MAP 2). Proc Natl Acad Sci U S A. 1980 Jun;77(6):3206–3210. doi: 10.1073/pnas.77.6.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Weis-Fogh T., Amos W. B. Evidence for a new mechanism of cell motility. Nature. 1972 Apr 7;236(5345):301–304. doi: 10.1038/236301a0. [DOI] [PubMed] [Google Scholar]
  70. Wikswo M. A., Novales R. R. Effect of colchicine on microtubules in the melanophores of Fundulus heteroclitus. J Ultrastruct Res. 1972 Nov;41(3):189–201. doi: 10.1016/s0022-5320(72)90063-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES