Abstract
Cell shape is known to influence the chondrogenic differentiation of cultured limb bud mesenchyme cells (Solursh, M., T. F. Linsenmayer, and K. L. Jensen, 1982, Dev. Biol., 94: 259-264). To test whether specific cytoskeletal components mediate this influence of cell shape, we examined different cytoskeleton disrupting agents for their ability to affect chondrogenesis. Limb bud cells cultured at subconfluent densities on plastic substrata normally become flattened, contain numerous cytoplasmic microtubules and actin bundles, and do not undergo spontaneous chondrogenesis. If such cultures are treated with 2 micrograms/ml cytochalasin D during the initial 3-24 h in culture, the cells round up, lose their actin cables, and undergo chondrogenesis, as indicated by the production of immunologically detectable type II collagen and a pericellular Alcian blue staining matrix. Cytochalasin D also induces cartilage formation by high-density cultures of proximal limb bud cells, which normally become blocked in a protodifferentiated state. In addition, cytochalasin D was found to reverse the normal inhibition by fibronectin of chondrogenesis by proximal limb bud cells cultured in hydrated collagen gels. Agents that disrupt microtubules have no apparent effect on the shape or chondrogenic differentiation of limb bud mesenchymal cells. These results suggest an involvement of the actin cytoskeleton in controlling cell shape and chondrogenic differentiation of limb bud mesenchyme. Interactions of the actin cytoskeleton and extracellular matrix components may provide a regulatory mechanism for mesenchyme cell differentiation into cartilage or fibrous connective tissue in the developing limb.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahrens P. B., Solursh M., Reiter R. S. Stage-related capacity for limb chondrogenesis in cell culture. Dev Biol. 1977 Oct 1;60(1):69–82. doi: 10.1016/0012-1606(77)90110-5. [DOI] [PubMed] [Google Scholar]
- Ali I. U., Hynes R. O. Effects of cytochalasin B and colchicine on attachment of a major surface protein of fibroblasts. Biochim Biophys Acta. 1977 Nov 15;471(1):16–24. doi: 10.1016/0005-2736(77)90388-1. [DOI] [PubMed] [Google Scholar]
- Aubin J. E., Alders E., Heersche J. N. A primary role for microfilaments, but not microtubules, in hormone-induced cytoplasmic retraction. Exp Cell Res. 1983 Feb;143(2):439–450. doi: 10.1016/0014-4827(83)90070-8. [DOI] [PubMed] [Google Scholar]
- Avivi A. On the mechanism of TSH-induced formation of follicle-like structures in primary cultures of thyroid cells. Cell Biol Int Rep. 1982 Dec;6(12):1109–1118. doi: 10.1016/0309-1651(82)90028-5. [DOI] [PubMed] [Google Scholar]
- Benya P. D., Shaffer J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982 Aug;30(1):215–224. doi: 10.1016/0092-8674(82)90027-7. [DOI] [PubMed] [Google Scholar]
- Caplan A. I. Effects of the nicotinamide-sensitive teratogen3-acetylpyridine on chick limb cells in culture. Exp Cell Res. 1970 Oct;62(2):341–355. doi: 10.1016/0014-4827(70)90564-1. [DOI] [PubMed] [Google Scholar]
- Cervera M., Dreyfuss G., Penman S. Messenger RNA is translated when associated with the cytoskeletal framework in normal and VSV-infected HeLa cells. Cell. 1981 Jan;23(1):113–120. doi: 10.1016/0092-8674(81)90276-2. [DOI] [PubMed] [Google Scholar]
- Courtois Y., Arruti C., Barritault D., Tassin J., Olivié M., Hughes R. C. Modulation of the shape of epithelial lens cells in vitro directed by a retinal extract factor. A model of interconversions and the role of actin filaments and fibronectin. Differentiation. 1981;18(1):11–27. doi: 10.1111/j.1432-0436.1981.tb01100.x. [DOI] [PubMed] [Google Scholar]
- Dessau W., von der Mark H., von der Mark K., Fischer S. Changes in the patterns of collagens and fibronectin during limb-bud chondrogenesis. J Embryol Exp Morphol. 1980 Jun;57:51–60. [PubMed] [Google Scholar]
- Elsdale T., Bard J. Collagen substrata for studies on cell behavior. J Cell Biol. 1972 Sep;54(3):626–637. doi: 10.1083/jcb.54.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynes R. O., Destree A. T. Relationships between fibronectin (LETS protein) and actin. Cell. 1978 Nov;15(3):875–886. doi: 10.1016/0092-8674(78)90272-6. [DOI] [PubMed] [Google Scholar]
- Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
- LEV R., SPICER S. S. SPECIFIC STAINING OF SULPHATE GROUPS WITH ALCIAN BLUE AT LOW PH. J Histochem Cytochem. 1964 Apr;12:309–309. doi: 10.1177/12.4.309. [DOI] [PubMed] [Google Scholar]
- Lenk R., Ransom L., Kaufmann Y., Penman S. A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell. 1977 Jan;10(1):67–78. doi: 10.1016/0092-8674(77)90141-6. [DOI] [PubMed] [Google Scholar]
- Levitt D., Dorfman A. The irreversible inhibition of differentiation of limb-bud mesenchyme by bromodeoxyuridine. Proc Natl Acad Sci U S A. 1972 May;69(5):1253–1257. doi: 10.1073/pnas.69.5.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linsenmayer T. F., Hendrix M. J. Monoclonal antibodies to connective tissue macromolecules: type II collagen. Biochem Biophys Res Commun. 1980 Jan 29;92(2):440–446. doi: 10.1016/0006-291x(80)90352-6. [DOI] [PubMed] [Google Scholar]
- Mautner V., Hynes R. O. Surface distribution of LETS protein in relation to the cytoskeleton of normal and transformed cells. J Cell Biol. 1977 Dec;75(3):743–768. doi: 10.1083/jcb.75.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osborn M., Weber K. The display of microtubules in transformed cells. Cell. 1977 Nov;12(3):561–571. doi: 10.1016/0092-8674(77)90257-4. [DOI] [PubMed] [Google Scholar]
- Owens E. M., Solursh M. Accelerated maturation of limb mesenchyme by the BrachypodH mouse mutation. Differentiation. 1983;24(2):145–148. doi: 10.1111/j.1432-0436.1983.tb01314.x. [DOI] [PubMed] [Google Scholar]
- Schliwa M. Action of cytochalasin D on cytoskeletal networks. J Cell Biol. 1982 Jan;92(1):79–91. doi: 10.1083/jcb.92.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer I. I. The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell. 1979 Mar;16(3):675–685. doi: 10.1016/0092-8674(79)90040-0. [DOI] [PubMed] [Google Scholar]
- Singley C. T., Solursh M. The spatial distribution of hyaluronic acid and mesenchymal condensation in the embryonic chick wing. Dev Biol. 1981 May;84(1):102–120. doi: 10.1016/0012-1606(81)90375-4. [DOI] [PubMed] [Google Scholar]
- Solursh M., Jensen K. L., Singley C. T., Linsenmayer T. F., Reiter R. S. Two distinct regulatory steps in cartilage differentiation. Dev Biol. 1982 Dec;94(2):311–325. doi: 10.1016/0012-1606(82)90350-5. [DOI] [PubMed] [Google Scholar]
- Solursh M., Linsenmayer T. F., Jensen K. L. Chondrogenesis from single limb mesenchyme cells. Dev Biol. 1982 Nov;94(1):259–264. doi: 10.1016/0012-1606(82)90090-2. [DOI] [PubMed] [Google Scholar]
- Solursh M., Reiter R. S. Determination of limb bud chondrocytes during a transient block of the cell cycle. Cell Differ. 1975 Jun;4(3):131–137. doi: 10.1016/0045-6039(75)90034-2. [DOI] [PubMed] [Google Scholar]
- Solursh M., Reiter R. S. Evidence for histogenic interactions during in vitro limb chondrogenesis. Dev Biol. 1980 Jul;78(1):141–150. doi: 10.1016/0012-1606(80)90324-3. [DOI] [PubMed] [Google Scholar]
- Spiegelman B. M., Farmer S. R. Decreases in tubulin and actin gene expression prior to morphological differentiation of 3T3 adipocytes. Cell. 1982 May;29(1):53–60. doi: 10.1016/0092-8674(82)90089-7. [DOI] [PubMed] [Google Scholar]
- Spiegelman B. M., Ginty C. A. Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell. 1983 Dec;35(3 Pt 2):657–666. doi: 10.1016/0092-8674(83)90098-3. [DOI] [PubMed] [Google Scholar]
- Spiegelman B. M., Green H. Control of specific protein biosynthesis during the adipose conversion of 3T3 cells. J Biol Chem. 1980 Sep 25;255(18):8811–8818. [PubMed] [Google Scholar]
- Sugrue S. P., Hay E. D. Interaction of embryonic corneal epithelium with exogenous collagen, laminin, and fibronectin: role of endogenous protein synthesis. Dev Biol. 1982 Jul;92(1):97–106. doi: 10.1016/0012-1606(82)90154-3. [DOI] [PubMed] [Google Scholar]
- Sugrue S. P., Hay E. D. Response of basal epithelial cell surface and Cytoskeleton to solubilized extracellular matrix molecules. J Cell Biol. 1981 Oct;91(1):45–54. doi: 10.1083/jcb.91.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swalla B. J., Owens E. M., Linsenmayer T. F., Solursh M. Two distinct classes of prechondrogenic cell types in the embryonic limb bud. Dev Biol. 1983 May;97(1):59–69. doi: 10.1016/0012-1606(83)90063-5. [DOI] [PubMed] [Google Scholar]
- Swalla B. J., Solursh M. Inhibition of limb chondrogenesis by fibronectin. Differentiation. 1984;26(1):42–48. doi: 10.1111/j.1432-0436.1984.tb01371.x. [DOI] [PubMed] [Google Scholar]
- Thorogood P. V., Hinchliffe J. R. An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb. J Embryol Exp Morphol. 1975 Jun;33(3):581–606. [PubMed] [Google Scholar]
- Tramontano D., Avivi A., Ambesi-Impiombato F. S., Barak L., Geiger B., Schlessinger J. Thyrotropin induces changes in the morphology and the organization of microfilament structures in cultured thyroid cells. Exp Cell Res. 1982 Feb;137(2):269–275. doi: 10.1016/0014-4827(82)90027-1. [DOI] [PubMed] [Google Scholar]
- Weber K., Rathke P. C., Osborn M., Franke W. W. Distribution of actin and tubulin in cells and in glycerinated cell models after treatment with cytochalasin B (CB). Exp Cell Res. 1976 Oct 15;102(2):285–297. doi: 10.1016/0014-4827(76)90044-6. [DOI] [PubMed] [Google Scholar]
- Westermark B., Portor K. R. Hormonally induced changes in the cytoskeleton of human thyroid cells in culture. J Cell Biol. 1982 Jul;94(1):42–50. doi: 10.1083/jcb.94.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]