Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jul 1;99(1 Pt 1):141–147. doi: 10.1083/jcb.99.1.141

Taxol-induced rose microtubule polymerization in vitro and its inhibition by colchicine

PMCID: PMC2275629  PMID: 6145718

Abstract

Tubulin was isolated from cultured cells of rose (Rosa, sp.cv. Paul's scarlet) by DEAE-Sephadex A50 chromatography, and the taxol-induced polymerization of microtubules in vitro was characterized at 24 degrees C by turbidity development, sedimentation analysis, and electron microscopy. Numerous, short microtubules were formed in the presence of taxol, and maximum levels of turbidity and polymer yield were obtained at approximately 2:1 molar ratios of taxol to tubulin. The critical concentration of rose tubulin for polymerization in saturating taxol was estimated to be 0.21 mg/ml. Colchicine inhibited the taxol-induced polymerization of tubulin as shown by sedimentation assays; however, much higher concentrations of colchicine were required for the inhibition of taxol-induced rose tubulin assembly than for inhibition of taxol-induced mammalian brain tubulin assembly. On the basis of the relative sensitivity of rose tubulin assembly to taxol and its insensitivity to colchicine, we propose that the taxol-binding site(s) on plant and animal tubulins have been more conserved over evolution than the colchicine-binding site(s).

Full Text

The Full Text of this article is available as a PDF (915.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreu J. M., Wagenknecht T., Timasheff S. N. Polymerization of the tubulin-colchicine complex: relation to microtubule assembly. Biochemistry. 1983 Mar 29;22(7):1556–1566. doi: 10.1021/bi00276a006. [DOI] [PubMed] [Google Scholar]
  2. Bajer A. S., Cypher C., Molè-Bajer J., Howard H. M. Taxol-induced anaphase reversal: evidence that elongating microtubules can exert a pushing force in living cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6569–6573. doi: 10.1073/pnas.79.21.6569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baum S. G., Wittner M., Nadler J. P., Horwitz S. B., Dennis J. E., Schiff P. B., Tanowitz H. B. Taxol, a microtubule stabilizing agent, blocks the replication of Trypanosoma cruzi. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4571–4575. doi: 10.1073/pnas.78.7.4571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bergen L. G., Borisy G. G. Tubulin-colchicine complex inhibits microtubule elongation at both plus and minus ends. J Biol Chem. 1983 Apr 10;258(7):4190–4194. [PubMed] [Google Scholar]
  5. Berne B. J. Interpretation of the light scattering from long rods. J Mol Biol. 1974 Nov 15;89(4):755–758. doi: 10.1016/0022-2836(74)90049-7. [DOI] [PubMed] [Google Scholar]
  6. Bryan J. Definition of three classes of binding sites in isolated microtubule crystals. Biochemistry. 1972 Jul 4;11(14):2611–2616. doi: 10.1021/bi00764a010. [DOI] [PubMed] [Google Scholar]
  7. Caplow M., Zeeberg B. Dynamic properties of microtubules at steady state in the presence of taxol. Eur J Biochem. 1982 Oct;127(2):319–324. doi: 10.1111/j.1432-1033.1982.tb06873.x. [DOI] [PubMed] [Google Scholar]
  8. Carlier M. F., Pantaloni D. Taxol effect on tubulin polymerization and associated guanosine 5'-triphosphate hydrolysis. Biochemistry. 1983 Sep 27;22(20):4814–4822. doi: 10.1021/bi00289a031. [DOI] [PubMed] [Google Scholar]
  9. De Brabander M., Geuens G., Nuydens R., Willebrords R., De Mey J. Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5608–5612. doi: 10.1073/pnas.78.9.5608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frigon R. P., Lee J. C. The stabilization of calf-brain microtubule protein by sucrose. Arch Biochem Biophys. 1972 Dec;153(2):587–589. doi: 10.1016/0003-9861(72)90376-1. [DOI] [PubMed] [Google Scholar]
  11. Gaskin F., Cantor C. R., Shelanski M. L. Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol. 1974 Nov 15;89(4):737–755. doi: 10.1016/0022-2836(74)90048-5. [DOI] [PubMed] [Google Scholar]
  12. Hamel E., del Campo A. A., Lowe M. C., Lin C. M. Interactions of taxol, microtubule-associated proteins, and guanine nucleotides in tubulin polymerization. J Biol Chem. 1981 Nov 25;256(22):11887–11894. [PubMed] [Google Scholar]
  13. Heidemann S. R., Gallas P. T. The effect of taxol on living eggs of Xenopus laevis. Dev Biol. 1980 Dec;80(2):489–494. doi: 10.1016/0012-1606(80)90421-2. [DOI] [PubMed] [Google Scholar]
  14. Johnson K. A., Borisy G. G. Kinetic analysis of microtubule self-assembly in vitro. J Mol Biol. 1977 Nov 25;117(1):1–31. doi: 10.1016/0022-2836(77)90020-1. [DOI] [PubMed] [Google Scholar]
  15. Johnson K. A., Borisy G. G. The equilibrium assembly of microtubules in vitro. Soc Gen Physiol Ser. 1975;30:119–141. [PubMed] [Google Scholar]
  16. Krauhs E., Little M., Kempf T., Hofer-Warbinek R., Ade W., Ponstingl H. Complete amino acid sequence of beta-tubulin from porcine brain. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4156–4160. doi: 10.1073/pnas.78.7.4156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kumar N. Taxol-induced polymerization of purified tubulin. Mechanism of action. J Biol Chem. 1981 Oct 25;256(20):10435–10441. [PubMed] [Google Scholar]
  18. Lee J. C., Frigon R. P., Timasheff S. N. The chemical characterization of calf brain microtubule protein subunits. J Biol Chem. 1973 Oct 25;248(20):7253–7262. [PubMed] [Google Scholar]
  19. Lockwood A. H. Molecules in mammalian brain that interact with the colchicine site on tubulin. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1184–1188. doi: 10.1073/pnas.76.3.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Manfredi J. J., Parness J., Horwitz S. B. Taxol binds to cellular microtubules. J Cell Biol. 1982 Sep;94(3):688–696. doi: 10.1083/jcb.94.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Margolis R. L., Rauch C. T., Wilson L. Mechanism of colchicine-dimer addition to microtubule ends: implications for the microtubule polymerization mechanism. Biochemistry. 1980 Nov 25;19(24):5550–5557. doi: 10.1021/bi00565a014. [DOI] [PubMed] [Google Scholar]
  22. Masurovsky E. B., Peterson E. R., Crain S. M., Horwitz S. B. Microtubule arrays in taxol-treated mouse dorsal root ganglion-spinal cord cultures. Brain Res. 1981 Aug 3;217(2):392–398. doi: 10.1016/0006-8993(81)90017-2. [DOI] [PubMed] [Google Scholar]
  23. Molè-Bajer J., Bajer A. S. Action of taxol on mitosis: modification of microtubule arrangements and function of the mitotic spindle in Haemanthus endosperm. J Cell Biol. 1983 Feb;96(2):527–540. doi: 10.1083/jcb.96.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morejohn L. C., Bureau T. E., Tocchi L. P., Fosket D. E. Tubulins from different higher plant species are immunologically nonidentical and bind colchicine differentially. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1440–1444. doi: 10.1073/pnas.81.5.1440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morejohn L. C., Fosket D. E. Higher plant tubulin identified by self-assembly into microtubules in vitro. Nature. 1982 Jun 3;297(5865):426–428. doi: 10.1038/297426a0. [DOI] [PubMed] [Google Scholar]
  26. Morejohn L. C., Fosket D. E. Inhibition of Plant Microtubule Polymerization in vitro by the Phosphoric Amide Herbicide Amiprophos-Methyl. Science. 1984 May 25;224(4651):874–876. doi: 10.1126/science.224.4651.874. [DOI] [PubMed] [Google Scholar]
  27. Olmsted J. B., Borisy G. G. Characterization of microtubule assembly in porcine brain extracts by viscometry. Biochemistry. 1973 Oct 9;12(21):4282–4289. doi: 10.1021/bi00745a037. [DOI] [PubMed] [Google Scholar]
  28. Parness J., Asnes C. F., Horwitz S. B. Taxol binds differentially to flagellar outer doublets and their reassembled microtubules. Cell Motil. 1983;3(2):123–130. doi: 10.1002/cm.970030203. [DOI] [PubMed] [Google Scholar]
  29. Parness J., Horwitz S. B. Taxol binds to polymerized tubulin in vitro. J Cell Biol. 1981 Nov;91(2 Pt 1):479–487. doi: 10.1083/jcb.91.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ponstingl H., Krauhs E., Little M., Kempf T. Complete amino acid sequence of alpha-tubulin from porcine brain. Proc Natl Acad Sci U S A. 1981 May;78(5):2757–2761. doi: 10.1073/pnas.78.5.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schatten G., Schatten H., Bestor T. H., Balczon R. Taxol inhibits the nuclear movements during fertilization and induces asters in unfertilized sea urchin eggs. J Cell Biol. 1982 Aug;94(2):455–465. doi: 10.1083/jcb.94.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  33. Schiff P. B., Horwitz S. B. Taxol assembles tubulin in the absence of exogenous guanosine 5'-triphosphate or microtubule-associated proteins. Biochemistry. 1981 May 26;20(11):3247–3252. doi: 10.1021/bi00514a041. [DOI] [PubMed] [Google Scholar]
  34. Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shelanski M. L., Taylor E. W. Isolation of a protein subunit from microtubules. J Cell Biol. 1967 Aug;34(2):549–554. doi: 10.1083/jcb.34.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sherline P., Schiavone K., Brocato S. Endogenous inhibitor of colchicine-tubulin binding in rat brain. Science. 1979 Aug 10;205(4406):593–595. doi: 10.1126/science.451622. [DOI] [PubMed] [Google Scholar]
  38. Sherline P., Schiavone K. Immunofluorescence localization of proteins of high molecular weight along intracellular microtubules. Science. 1977 Dec 9;198(4321):1038–1040. doi: 10.1126/science.337490. [DOI] [PubMed] [Google Scholar]
  39. Solomon F., Monard D., Rentsch M. Letter: stabilization of colchicine-binding activity of neuroblastoma. J Mol Biol. 1973 Aug 15;78(3):569–573. doi: 10.1016/0022-2836(73)90477-4. [DOI] [PubMed] [Google Scholar]
  40. Sternlicht H., Ringel I. Colchicine inhibition of microtubule assembly via copolymer formation. J Biol Chem. 1979 Oct 25;254(20):10540–10550. [PubMed] [Google Scholar]
  41. Sternlicht H., Ringel I., Szasz J. Theory for modeling the copolymerization of tubulin and tubulin-colchicine complex. Biophys J. 1983 Jun;42(3):255–267. doi: 10.1016/S0006-3495(83)84393-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  43. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Valenzuela P., Quiroga M., Zaldivar J., Rutter W. J., Kirschner M. W., Cleveland D. W. Nucleotide and corresponding amino acid sequences encoded by alpha and beta tubulin mRNAs. Nature. 1981 Feb 19;289(5799):650–655. doi: 10.1038/289650a0. [DOI] [PubMed] [Google Scholar]
  45. Vallee R. B. A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Cell Biol. 1982 Feb;92(2):435–442. doi: 10.1083/jcb.92.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wani M. C., Taylor H. L., Wall M. E., Coggon P., McPhail A. T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971 May 5;93(9):2325–2327. doi: 10.1021/ja00738a045. [DOI] [PubMed] [Google Scholar]
  47. Wiche G., Honig L. S., Cole R. D. Polymerising ability of C6 glial cell microtubule protein decays much faster than its colchicine-binding activity. Nature. 1977 Sep 29;269(5627):435–436. doi: 10.1038/269435a0. [DOI] [PubMed] [Google Scholar]
  48. Wilson L., Meza I. The mechanism of action of colchicine. Colchicine binding properties of sea urchin sperm tail outer doublet tubulin. J Cell Biol. 1973 Sep;58(3):709–719. doi: 10.1083/jcb.58.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wilson L. Properties of colchicine binding protein from chick embryo brain. Interactions with vinca alkaloids and podophyllotoxin. Biochemistry. 1970 Dec 8;9(25):4999–5007. doi: 10.1021/bi00827a026. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES