Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jul 1;99(1 Pt 1):272–286. doi: 10.1083/jcb.99.1.272

Differences of supranucleosomal organization in different kinds of chromatin: cell type-specific globular subunits containing different numbers of nucleosomes

PMCID: PMC2275636  PMID: 6736129

Abstract

Fractions of homogeneously-sized supranucleosomal particles can be obtained in high yield and purity from various types of cells by brief micrococcal nuclease digestion (10 or 20 s) of condensed chromatin in 100 mM NaCl followed by sucrose gradient centrifugation and agarose gel electrophoresis. These chromatin particles, which contain only DNA and histones, differed according to cell type. Sea urchin spermatozoa (Paracentrotus lividus) gave rise to heavy particles (ca. 260 S) with a mean diameter (48 nm). These resembled the unit chromatin fibrils fixed in situ, which contain an average of 48 nucleosomes, as determined both by electron microscopy after unraveling in low salt buffer and gel electrophoresis. In contrast, higher order particles from chicken erythrocyte chromatin were smaller (105 S; 36-nm diam) and contained approximately 20 nucleosomes. The smallest type of supranucleosomal particle was obtained from chicken and rat liver (39 S; 32-nm diam; eight nucleosomes). Oligomeric chains of such granular particles could be recognized in regions of higher sucrose density, indicating that distinct supranucleosomal particles of globular shape are not an artifact of exposure to low salt concentrations but can be obtained at near-physiological ionic strength. The demonstration of different particle sizes in chromatin from different types of nuclei is contrary to the view that such granular particles are produced by artificial breakdown into "detached turns" from a uniform and general solenoid structure of approximately six nucleosomes per turn. Our observations indicate that the higher order packing of the nucleosomal chain can differ greatly in different types of nuclei and the supranucleosomal organization of chromatin differs between cell types and is related to the specific state of cell differentiation.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan J., Cowling G. J., Harborne N., Cattini P., Craigie R., Gould H. Regulation of the higher-order structure of chromatin by histones H1 and H5. J Cell Biol. 1981 Aug;90(2):279–288. doi: 10.1083/jcb.90.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allan J., Harborne N., Rau D. C., Gould H. Participation of core histone "tails" in the stabilization of the chromatin solenoid. J Cell Biol. 1982 May;93(2):285–297. doi: 10.1083/jcb.93.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Azorín F., Pérez-Grau L., Subirana J. A. Supranucleosomal organization of chromatin. Electron microscopic visualization of long polynucleosomal chains. Chromosoma. 1982;85(2):251–260. doi: 10.1007/BF00294969. [DOI] [PubMed] [Google Scholar]
  4. BLACK P. H., CRAWFORD E. M., CRAWFORD L. V. THE PURIFICATION OF SIMIAN VIRUS 40. Virology. 1964 Nov;24:381–387. doi: 10.1016/0042-6822(64)90175-8. [DOI] [PubMed] [Google Scholar]
  5. Bates D. L., Butler P. J., Pearson E. C., Thomas J. O. Stability of the higher-order structure of chicken-erythrocyte chromatin in solution. Eur J Biochem. 1981 Oct;119(3):469–476. doi: 10.1111/j.1432-1033.1981.tb05631.x. [DOI] [PubMed] [Google Scholar]
  6. Butler P. J. The folding of chromatin. CRC Crit Rev Biochem. 1983;15(1):57–91. doi: 10.3109/10409238309102801. [DOI] [PubMed] [Google Scholar]
  7. Butler P. J., Thomas J. O. Changes in chromatin folding in solution. J Mol Biol. 1980 Jul 15;140(4):505–529. doi: 10.1016/0022-2836(80)90268-5. [DOI] [PubMed] [Google Scholar]
  8. Butt T. R., Jump D. B., Smulson M. E. Nucleosome periodicity in HeLa cell chromatin as probed by micrococcal nuclease. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1628–1632. doi: 10.1073/pnas.76.4.1628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Campbell A. M., Cotter R. I., Pardon J. F. Light scattering measurements supporting helical structures for chromatin in solution. Nucleic Acids Res. 1978 May;5(5):1571–1580. doi: 10.1093/nar/5.5.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carpenter B. G., Baldwin J. P., Bradbury E. M., Ibel K. Organisation of subunits in chromatin. Nucleic Acids Res. 1976 Jul;3(7):1739–1746. doi: 10.1093/nar/3.7.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cartwright I. L., Abmayr S. M., Fleischmann G., Lowenhaupt K., Elgin S. C., Keene M. A., Howard G. C. Chromatin structure and gene activity: the role of nonhistone chromosomal proteins. CRC Crit Rev Biochem. 1982;13(1):1–86. doi: 10.3109/10409238209108709. [DOI] [PubMed] [Google Scholar]
  12. Christiansen G., Griffith J. Salt and divalent cations affect the flexible nature of the natural beaded chromatin structure. Nucleic Acids Res. 1977 Jun;4(6):1837–1851. doi: 10.1093/nar/4.6.1837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Davies H. G., Haynes M. E. Electron-microscope observations on cell nuclei in various tissues of a teleost fish: the nucleolus-associated monolayer of chromatin structural units. J Cell Sci. 1976 Jul;21(2):315–327. doi: 10.1242/jcs.21.2.315. [DOI] [PubMed] [Google Scholar]
  14. Davies H. G., Murray A. B., Walmsley M. E. Electron-microscope observations on the organization of the nucleus in chicken erythrocytes and a superunit thread hypothesis for chromosome structure. J Cell Sci. 1974 Nov;16(2):261–299. doi: 10.1242/jcs.16.2.261. [DOI] [PubMed] [Google Scholar]
  15. Finch J. T., Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1897–1901. doi: 10.1073/pnas.73.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Franke W. W., Lüder M. R., Kartenbeck J., Zerban H., Keenan T. W. Involvement of vesicle coat material in casein secretion and surface regeneration. J Cell Biol. 1976 Apr;69(1):173–195. doi: 10.1083/jcb.69.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Franke W. W., Scheer U., Trendelenburg M., Zentgraf H., Spring H. Morphology of transcriptionally active chromatin. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):755–772. doi: 10.1101/sqb.1978.042.01.076. [DOI] [PubMed] [Google Scholar]
  18. Greimers R., Deltour R. Organization of transcribed and nontranscribed chromatin in isolated nuclei of Zea mays root cells. Eur J Cell Biol. 1981 Feb;23(2):303–311. [PubMed] [Google Scholar]
  19. Hozier J., Renz M., Nehls P. The chromosome fiber: evidence for an ordered superstructure of nucleosomes. Chromosoma. 1977 Jul 18;62(4):301–317. doi: 10.1007/BF00327030. [DOI] [PubMed] [Google Scholar]
  20. Itkes A. V., Glotov B. O., Nikolaev L. G., Preem S. R., Severin E. S. Repeating oligonucleosomal units. A new element of chromatin structure. Nucleic Acids Res. 1980 Feb 11;8(3):507–527. doi: 10.1093/nar/8.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jorcano J. L., Meyer G., Day L. A., Renz M. Aggregation of small oligonucleosomal chains into 300-A globular particles. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6443–6447. doi: 10.1073/pnas.77.11.6443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Keller W., Müller U., Eicken I., Wendel I., Zentgraf H. Biochemical and ultrastructural analysis of SV40 chromatin. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):227–244. doi: 10.1101/sqb.1978.042.01.025. [DOI] [PubMed] [Google Scholar]
  23. Kiryanov G. I., Manamshjan T. A., Polyakov V. Y., Fais D., Chentsov J. S. Levels of granular organization of chromatin fibres. FEBS Lett. 1976 Sep 1;67(3):323–327. doi: 10.1016/0014-5793(76)80557-1. [DOI] [PubMed] [Google Scholar]
  24. Kiryanov G. I., Smirnova T. A., Polyakov VYu Nucleomeric organization of chromatin. Eur J Biochem. 1982 May 17;124(2):331–338. doi: 10.1111/j.1432-1033.1982.tb06596.x. [DOI] [PubMed] [Google Scholar]
  25. Labhart P., Koller T. Electron microscope specimen preparation of rat liver chromatin by a modified Miller spreading technique. Eur J Cell Biol. 1981 Jun;24(2):309–316. [PubMed] [Google Scholar]
  26. Langmore J. P., Paulson J. R. Low angle x-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes. J Cell Biol. 1983 Apr;96(4):1120–1131. doi: 10.1083/jcb.96.4.1120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Langmore J. P., Schutt C. The higher order structure of chicken erythrocyte chromosomes in vivo. Nature. 1980 Dec 11;288(5791):620–622. doi: 10.1038/288620a0. [DOI] [PubMed] [Google Scholar]
  28. Longo F. J., Anderson E. Sperm differentiation in the sea urchins Arbacia punctulata and Strongylocentrotus purpuratus. J Ultrastruct Res. 1969 Jun;27(5):486–509. doi: 10.1016/s0022-5320(69)80046-8. [DOI] [PubMed] [Google Scholar]
  29. McGhee J. D., Nickol J. M., Felsenfeld G., Rau D. C. Higher order structure of chromatin: orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell. 1983 Jul;33(3):831–841. doi: 10.1016/0092-8674(83)90025-9. [DOI] [PubMed] [Google Scholar]
  30. McGhee J. D., Rau D. C., Charney E., Felsenfeld G. Orientation of the nucleosome within the higher order structure of chromatin. Cell. 1980 Nov;22(1 Pt 1):87–96. doi: 10.1016/0092-8674(80)90157-9. [DOI] [PubMed] [Google Scholar]
  31. Meyer G. F., Renz M. Native and reconstituted chromosome fiber fragments. Chromosoma. 1979 Nov;75(2):177–184. doi: 10.1007/BF00292206. [DOI] [PubMed] [Google Scholar]
  32. Miller O. L., Jr, Bakken A. H. Morphological studies of transcription. Acta Endocrinol Suppl (Copenh) 1972;168:155–177. doi: 10.1530/acta.0.071s155. [DOI] [PubMed] [Google Scholar]
  33. Morris N. R. A comparison of the structure of chicken erythrocyte and chicken liver chromatin. Cell. 1976 Dec;9(4 Pt 1):627–632. doi: 10.1016/0092-8674(76)90045-3. [DOI] [PubMed] [Google Scholar]
  34. Muyldermans S., Lasters I., Wyns L., Hamers R. Upon the observation of superbeads in chromatin. Nucleic Acids Res. 1980 May 24;8(10):2165–2172. doi: 10.1093/nar/8.10.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Müller U., Zentgraf H., Eicken I., Keller W. Higher order structure of simian virus 40 chromatin. Science. 1978 Aug 4;201(4354):406–415. doi: 10.1126/science.208155. [DOI] [PubMed] [Google Scholar]
  36. Olins A. L. nu bodies are close-packed in chromatin fibers. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):325–329. doi: 10.1101/sqb.1978.042.01.034. [DOI] [PubMed] [Google Scholar]
  37. Pratt H., Cox R. A. Proteins from biologically active ribosomal subparticles of Xenopus leavis. Biochim Biophys Acta. 1973 May 17;310(1):188–204. doi: 10.1016/0005-2795(73)90022-6. [DOI] [PubMed] [Google Scholar]
  38. Pruitt S. C., Grainger R. M. A repeating unit of higher order chromatin structure in chick red blood cell nuclei. Chromosoma. 1980;78(3):257–274. doi: 10.1007/BF00327387. [DOI] [PubMed] [Google Scholar]
  39. Puigdomènech P., Ruiz-Carrillo A. Effect of histone composition on the stability of chromatin structure. Biochim Biophys Acta. 1982 Mar 29;696(3):267–274. doi: 10.1016/0167-4781(82)90057-4. [DOI] [PubMed] [Google Scholar]
  40. Rattner J. B., Hamkalo B. A. Higher order structure in metaphase chromosomes. II. The relationship between the 250 A fiber, superbeads and beads-on-a-string. Chromosoma. 1978 Dec 6;69(3):373–379. doi: 10.1007/BF00332140. [DOI] [PubMed] [Google Scholar]
  41. Renz M., Nehls P., Hozier J. Involvement of histone H1 in the organization of the chromosome fiber. Proc Natl Acad Sci U S A. 1977 May;74(5):1879–1883. doi: 10.1073/pnas.74.5.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ruiz-Carrillo A., Puigdomènech P., Eder G., Lurz R. Stability and reversibility of higher ordered structure of interphase chromatin: continuity of deoxyribonucleic acid is not required for maintenance of folded structure. Biochemistry. 1980 Jun 10;19(12):2544–2554. doi: 10.1021/bi00553a002. [DOI] [PubMed] [Google Scholar]
  43. Sass H. Hierarchy of fibrillar organization levels in the polytene interphase chromosomes of Chironomus. J Cell Sci. 1980 Oct;45:269–293. doi: 10.1242/jcs.45.1.269. [DOI] [PubMed] [Google Scholar]
  44. Scheer U. Changes of nucleosome frequency in nucleolar and non-nucleolar chromatin as a function of transcription: an electron microscopic study. Cell. 1978 Mar;13(3):535–549. doi: 10.1016/0092-8674(78)90327-6. [DOI] [PubMed] [Google Scholar]
  45. Scheer U., Trendelenburg M. F., Franke W. W. Transcription of ribosomal RNA cistrons. Correlation of morphological and biochemical data. Exp Cell Res. 1973 Jul;80(1):175–190. doi: 10.1016/0014-4827(73)90289-9. [DOI] [PubMed] [Google Scholar]
  46. Scheer U., Zentgraf H. Nucleosomal and supranucleosomal organization of transcriptionally inactive rDNA circles in Dytiscus oocytes. Chromosoma. 1978 Nov 22;69(2):243–254. doi: 10.1007/BF00329922. [DOI] [PubMed] [Google Scholar]
  47. Simpson R. T., Bergman L. W. Structure of sea urchin sperm chromatin core particle. J Biol Chem. 1980 Nov 25;255(22):10702–10709. [PubMed] [Google Scholar]
  48. Simpson R. T. Modulation of nucleosome structure by histone subtypes in sea urchin embryos. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6803–6807. doi: 10.1073/pnas.78.11.6803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Spadafora C., Bellard M., Compton J. L., Chambon P. The DNA repeat lengths in chromatins from sea urchin sperm and gastrule cells are markedly different. FEBS Lett. 1976 Oct 15;69(1):281–285. doi: 10.1016/0014-5793(76)80704-1. [DOI] [PubMed] [Google Scholar]
  50. Strätling W. H., Müller U., Zentgraf H. The higher order repeat structure of chromatin is built up of globular particles containing eight nucleosomes. Exp Cell Res. 1978 Dec;117(2):301–311. doi: 10.1016/0014-4827(78)90144-1. [DOI] [PubMed] [Google Scholar]
  51. Suau P., Bradbury E. M., Baldwin J. P. Higher-order structures of chromatin in solution. Eur J Biochem. 1979 Jul;97(2):593–602. doi: 10.1111/j.1432-1033.1979.tb13148.x. [DOI] [PubMed] [Google Scholar]
  52. Subirana J. A., Muñoz-Guerra S., Martínez A. B., Pérez-Grau L., Marcet X., Fita I. The subunit structure of chromatin fibres. Chromosoma. 1981;83(4):455–471. doi: 10.1007/BF00328272. [DOI] [PubMed] [Google Scholar]
  53. Switzer R. C., 3rd, Merril C. R., Shifrin S. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem. 1979 Sep 15;98(1):231–237. doi: 10.1016/0003-2697(79)90732-2. [DOI] [PubMed] [Google Scholar]
  54. Thoma F., Koller T., Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol. 1979 Nov;83(2 Pt 1):403–427. doi: 10.1083/jcb.83.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Thomas J. O., Butler P. J. Size-dependence of a stable higher-order structure of chromatin. J Mol Biol. 1980 Nov 25;144(1):89–93. doi: 10.1016/0022-2836(80)90215-6. [DOI] [PubMed] [Google Scholar]
  56. Thomas J. O., Kornberg R. D. An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2626–2630. doi: 10.1073/pnas.72.7.2626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Varshavsky A. J., Nedospasov S. A., Schmatchenko V. V., Bakayev V. V., Chumackov P. M., Georgiev G. P. Compact form of SV40 viral minichromosome is resistant to nuclease: possible implications for chromatin structure. Nucleic Acids Res. 1977 Oct;4(10):3303–3325. doi: 10.1093/nar/4.10.3303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Walker B. W., Lothstein L., Baker C. L., LeStourgeon W. M. The release of 40S hnRNP particles by brief digestion of HeLa nuclei with micrococcal nuclease. Nucleic Acids Res. 1980 Aug 25;8(16):3639–3657. doi: 10.1093/nar/8.16.3639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Walmsley M. E., Davies H. G. Ultrastructural and biochemical observations on interphase nuclei isolated from chicken erythrocytes. J Cell Sci. 1975 Jan;17(1):113–139. doi: 10.1242/jcs.17.1.113. [DOI] [PubMed] [Google Scholar]
  60. Weintraub H. The nucleosome repeat length increases during erythropoiesis in the chick. Nucleic Acids Res. 1978 Apr;5(4):1179–1188. doi: 10.1093/nar/5.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Weisbeek P. J., Sinsheimer R. L. A DNA-protein complex involved in bacteriophage phi chi 174 particle formation. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3054–3058. doi: 10.1073/pnas.71.8.3054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Zentgraf H., Deumling B., Jarasch E. D., Franke W. W. Nuclear membranes and plasma membranes from hen erythrocytes. I. Isolation, characterization, and comparison. J Biol Chem. 1971 May 10;246(9):2986–2995. [PubMed] [Google Scholar]
  63. Zentgraf H., Müller U., Franke W. W. Reversible in vitro packing of nucleosomal filaments into globular supranucleosomal units in chromatin of whole chick erythrocyte nuclei. Eur J Cell Biol. 1980 Dec;23(1):171–188. [PubMed] [Google Scholar]
  64. Zentgraf H., Müller U., Franke W. W. Supranucleosomal organization of sea urchin sperm chromatin in regularly arranged 40 to 50 nm large granular subunits. Eur J Cell Biol. 1980 Feb;20(3):254–264. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES