Abstract
The 3 centre-4 electrons (3c-4e) and the donor/acceptor or charge-transfer models for the description of the chemical bond in linear three-body systems, such as I3 − and related electron-rich (22 shell electrons) systems, are comparatively discussed on the grounds of structural data from a search of the Cambridge Structural Database (CSD). Both models account for a total bond order of 1 in these systems, and while the former fits better symmetric systems, the latter describes better strongly asymmetric situations. The 3c-4e MO scheme shows that any linear system formed by three aligned closed-shell species (24 shell electrons overall) has reason to exist provided that two electrons are removed from it to afford a 22 shell electrons three-body system: all combinations of three closed-shell halides and/or chalcogenides are considered here. A survey of the literature shows that most of these three-body systems exist. With some exceptions, their structural features vary continuously from the symmetric situation showing two equal bonds to very asymmetric situations in which one bond approaches to the value corresponding to a single bond and the second one to the sum of the van der Waals radii of the involved atoms. This indicates that the potential energy surface of these three-body systems is fairly flat, and that the chemical surrounding of the chalcogen/halogen atoms can play an important role in freezing different structural situations; this is well documented for the I3 − anion. The existence of correlations between the two bond distances and more importantly the linearity observed for all these systems, independently on the degree of their asymmetry, support the state of hypervalency of the central atom.
1. INTRODUCTION
The chemical bond in linear three-body systems, such as trihalides, has been the object of many papers appeared very recently in the literature [1–5]. Among them, the paper on trihalides and hydrogen dihalides published by Hoffmann et al. [2], the book edited by Akiba [1] “Chemistry of hypervalent compounds” appeared in 1999, and the chapter on hypervalent chalcogen compounds by Nakanishi [4] in “Handbook of chalcogen chemistry” edited by F. A. Devillanova, represent authoritative contributions to this topic. In particular, the paper by Hoffman analyzes, on the basis of theoretical calculations, the various contributions to the stabilization of trihalides, by comparing the Rundle-Pimentel [6, 7] model for electron-rich 3-centre 4-electron systems (Scheme 1) with that describing the interhalogenic bond as a donor/acceptor or charge-transfer interaction between a halide and a dihalogen molecule (Scheme 2).
Scheme 1.
Rundle-Pimentel model for electron-rich 3c-4e systems.
Scheme 2.
First approximation MO diagram for the donor/acceptor interaction between X− and X2 fragments.
The commonly accepted 3 centre-4 electron bonding model considers the central halogen to be hypervalent. According to this model, a linear system formed for example by three aligned closed-shell I− (24 shell electrons overall, I3 3−) has no reason to exist since the three MOs generated by the combination of the three pz orbitals, one from each interacting anion (Scheme 1), should be fully occupied by six electrons. However, the removal of two electrons from the antibonding MO causes an effective stabilization of the system and affords the well-known 22 shell electrons I3 − anion (Scheme 1). The stability of I3 − is determined by the occupancy of the lowest MO since the second filled MO is nonbonding in nature. The four electrons on the σ MOs plus the 6 electrons on the other three filled atomic orbitals equal a total of 10 electrons on the central I atom; this accounts for its description as an hypervalent species. However, a more formal counting indicates that only 8 electrons can be assigned to the central iodine since the HOMO is a combination out of phase of the pz orbitals of the external iodine atoms; consequently, no electron density coming from this MO can be assigned to the central iodine.
The alternative description of I3 − according to a Lewis model, which considers an sp 2 I+ cation having three lone pairs on the plane perpendicular to the bond direction and two hybrid orbitals able to linearly coordinate two I− anions (Scheme 3), leads again to assign 10 electrons to the central iodine.
Scheme 3.
Donation of two lone pairs from two I− into two empty hybrid orbitals around I+.
However, this model implies the combination of the dz2 and atomic orbitals of the central I+ to afford two unfilled hybrid orbitals able to accommodate two lone pairs from the two I− anions. According to this description, a simple notation, introduced by Arduengo et al. [5], identifies the central I atom as a 10−I−2 species, where “10” indicates the number of the electrons around the cental I, and “2” the number of the atoms or groups bonded to it. We must note that this formalism accounts very well for the hypervalent nature (expansion of the octet) of the central iodine, but does not account for the strength of the two bonds formed; in fact, according to such a model, each bond, arising from the localization of a pair of electrons from I−, should have a bond order of 1.
The simplest way to prepare a triiodide or in general a trihalide species considers the reaction between an X− anion with an X2 molecule (X− + X2→ X3 −). In terms of chemical bond description, this corresponds to the commonly named donor/acceptor interaction (Scheme 2) since the bond is formed via a σ donation from one of the four filled atomic orbitals of X− (np) towards the empty σ* antibonding molecular orbital of X2. As X− formally approaches X2, the three lone pairs of the approached X atom of the X2 molecule are reoriented in order to be on the plane perpendicular to the bond direction when the symmetric three-body system X3 − is formed. It corresponds to the rearrangement of a sp 3 carbon atom during a nucleophilic attack in an SN2 type reaction (Scheme 4). The substantial difference between a trihalide and a penta-coordinated carbon resides in their different stabilities: while the penta-coordinated carbon represents a transition state, which finds its stabilization by removing one of the two apical groups so to allow the carbon to return to an sp 3 hybridization, X3 − is a stable species. In such systems, the counting of the electrons around the central halogen and carbon atoms agrees very well with the notation by Arduengo et al. [5] (10-X-2 and 10-C-5, resp.). In fact, since the starting diatomic species (X2 in the case of trihalides formation) obeys to the octet rule, every interaction with a donor (X− in the case of trihalides formation) implies a transfer of electron density on X2, thus formally justifying a number of electrons higher than 8 on the central atom of the resulting three-body system.
Scheme 4.
Transition state of an SN22 type reaction at an sp3 carbon atom (Nu = nuclephilic group, X = leaving group).
The simplified donor/acceptor first approximation MO diagram for the formation of a trihalide species (Scheme 2) becomes more complicate if the donor atomic orbital of X− (np) is combined with both the σ* and the σ b MOs of X2. The result is a second approximation MO diagram having three new energy levels for the adduct, coming from the combination of these three orbitals (Scheme 5). 1
Scheme 5.
Second-order approximation MO diagram for the donor/acceptor interaction between X− and X2 fragments (combination of np(X−) with both σ b and σ* of X2).
The difference between the first and second approximation MO diagrams (Schemes 2 and 5) resides in the nature of the first two MOs of the formed three-body system. In fact, the energy mixing in the second approximation diagram (Scheme 5) has the consequence of increasing the bonding nature of the lowest MO, moving the intermediate MO to higher energies towards a nonbonding nature. Now we can compare the 3c-4e bond model (Scheme 1) with the two MO diagrams for the donor/acceptor interaction between X− and X2 (Schemes 2 and 5) to describe the chemical bond in X3 − anions. Since in all the three schemes, the highest MO is always an antibonding molecular orbital featuring a nodal plane between each couple of atoms, the differences between these models are mainly determined by the different nature of the lowest two molecular orbitals. According to the 3c-4e model, the stabilisation of electron-rich (22 shell electrons) three-body systems has to be ascribed only to the filling of the lowest MO, with a consequent bond order of 0.5 for each of the two bonds formed. According to the charge-transfer model, involving only the combination of a lone pair of X− with the σ* MO of X2, the filling up of the lowest energy level corresponds to a bond order of 1 within the X2 fragment, while the filling up of the intermediate level accounts for the bond formation between the two interacting fragments and for a lengthening of the X−X bond in X2: a bond order of 0.5 for both bonds is reached in the symmetric situation X−X−X−. In the second approximation charge-transfer MO diagram (Scheme 5), the lone pair of X− combines with both σ b and the σ* MOs of X2, consequently the bonding nature of first molecular orbital of the resulting three-body system is increased, and that of the second energy level is decreased, thus making this MO diagram intermediate between the 3c-4e and the first approximation charge-transfer MO diagrams (Schemes 1, 2, and 5).
2. DISCUSSION
The two bonding models (3c-4e and charge-transfer models) can be successfully employed to describe the chemical bond in numerous linear three-body systems featuring 22 shell electrons, formed by three aligned main group elements. The 3c-4e model describes linear three-body systems (electron-rich linear systems) in terms of interacting aligned closed-shell fragments; the stabilization is reached by removing a couple of electrons in order to leave unfilled the highest MO (Scheme 1). Scheme 1 shows the combination of three p orbitals lying at the same level of energy; in a more general scheme with different starting closed-shell fragments, the combined p orbitals lie at different energy levels with the consequence that they will contribute differently to each molecular orbital in the resulting three-body system. In particular, if the combined p orbital of one of the two external atoms lies at an energy level quite different from that of the p orbitals of the other two atoms, its contribution to the bonding MO will be poor with a consequent unbalancing of the two bonds. This case is normally better described with the charge-transfer model, which corresponds to the interaction between a donor and a 2c-2e bond system.
Another aspect that we must consider is the total charge brought by the final three-body system; it will depend only on the charges of the starting aligned closed-shell species. A very simple example is represented by the formation of the XeF2 molecule according to a 3c-4e model: the three-closed shell species to be considered are 2 F− and Xe; by removing a couple of electrons the neutral XeF2 molecule is generated. When three equal or different X− (X− = halide) are aligned, the resulting three-body system will be a trihalide monoanion.
The situation is much more complex for the formation of three-body systems from closed-shell species of 16th group elements, since the closed-shell species which can be combined can be both charged (E2−, R–E−) and neutral (R2E and R=E, R = organic framework and E = chalcogen atom). 2 In general, the alignment of three identical chalcogen species can afford three-body systems featuring very different charges, (a)–(d) in Scheme 6.
Scheme 6.
Different three-body systems featuring aligned chalcogen atoms. In (e) L=N-methylbenzothiazole-2(3H)-selone.
In principle, any combination of E2−, R–E−, R2E, and R=E species is possible, thus strongly increasing the variety of obtainable three-body systems. In addition, the central chalcogen atom of the three-body systems (a)–(d) reported in Scheme 6 can be aligned in turn to one or two other couples of closed-shell chalcogen species to form, after removal of 1 or 2 couples of electrons, systems featuring two ((e)–(g) in Scheme 6) or three orthogonal 3c-4e fragments, respectively. In this way we can explain the great variety of structural archetypes which contain a hypervalent chalcogen atom. The number of possible combinations further increases if mixed S, Se, and Te systems are also taken into account (see below).
Analogously to asymmetric trihalides, many asymmetric trichalcogen and mixed dichalcogen/halogen and chalcogen/dihalogen systems can be successfully described using the same charge-transfer model as that used for asymmetric trihalides. According to this model three-body systems arise from the interaction between a donor species (halide or chalcogen) and an acceptor species (dihalogen, dichalcogen, or chalcogen-halogen). 3 Therefore, a trichalcogen arrangement derives from the n(E)→ σ*(E–E) interaction between one of the above-mentioned closed-shell chalcogen species acting as a donor and the empty σ* MO of a dichalcogen molecule acting as an acceptor. In the case of mixed halogen/chalcogen systems, depending on the starting species, different topologies of three-body systems can be obtained, such as E−X−Y, X−E−Y, E−E−X, and E−X−E (E = chalcogen, X,Y = halogen), which correspond to the well-known charge-transfer adducts between chalcogen donors and dihalogens (E−X−Y), “T-shaped” adducts of chalcogen donors (X−E−Y), dichalcogen molecules interacting with halides (E−E−X), and halogen(+) linearly coordinated by two chalcogen donor molecules (E−X−E).
3. TRIHALIDES
The Cambridge Structural Database (CSD) has been searched for discrete tr ihalides fragments contained in deposited crystal structures; the results of the search are collected in Table 1. 4
Table 1.
Occurrence of linear isolated trihalide X−Y−Z fragments crystallographically characterized from a search of the Cambridge Structural Database (number of crystal structures in parentheses).
| Y–Z = | |||||||
|---|---|---|---|---|---|---|---|
|
| |||||||
| I–I | I–Br | I−Cl | Br–Br | Br–Cl | Cl–Cl | ||
| I | 809 (608)(a) | ∗ | ∗ | — | — | — | |
| X = | Br | 5(b) | 56 (40)(c) | ∗ | 86 (71)(d) | — | — |
| Cl | 2(e) | 4(f) | 55 (46)(g) | — | 1(h) | 6(i) | |
(a)For the references of triiodides see [3]. (b)References [8–11]. (c)References [12–43]. (d)References [15, 44– 109].
(e)References [10, 110, 111]. (f)References [112–114]. (g)References [32, 35, 43, 110, 111, 114–152]. (h)Reference [153].
(i)References [154–160]. *These fragments are already considered in the table.
The triiodides are the most numerous and the scatter plot of the corresponding two I–I bond lengths is shown in Figure 1.
Figure 1.
Scatter plot of d 1 versus d 2 for linear (angle > 165°) triiodides from a search of the CSD (608 structures containing 815 fragments). The mean bond lengthening is 9.7% with respect to the sum of the covalent radii.
The literature related to triiodides has been omitted here and we refer to the paper by Svensson and Kloo [3]. Although several data are spread apart in the scatter plot, 5 the majority of them are concentrated in the region corresponding to symmetric or weakly asymmetric triiodides. It is important to point out that an analogous correlation is found for Br3 −anions (see Figure 2) [44–109] while for other trihalides, such as ICl2 − (Figure 3) [115–152] and IBr2 −(Figure 4) [12–43], the corresponding scatter plots show a much less evident correlation. The structurally characterized Cl3 − fragments [154–160] are less than Br3 − and I3 − ones, and no bond length correlation diagram is presented for them. Except for the case reported by Gorge et al. [159] in which the two terminal chlorine atoms have significant contacts with two nitrogen atoms, in the other six reported structures containing the Cl3 − anion the two bonds are differently elongated, being 2.144/2.419 Å the bond distances found in the more asymmetric case (see Table 2). The number of structurally characterized mixed trihalides featuring two different terminal halogens (I–I–Br− [8–11], I–I–Cl− [110, 111], Cl–I–Br− [112–114]) is very small, and a unique example of Cl–Br–Cl− is reported in the literature (Tables 1 and 2) [153]. Among the considered fragments, we wish to emphasize the structural changes occurring on changing one of the terminal halogen from Cl, to Br and to I. Consider, for example, the I–Cl bond length in different trihalides: d (I–Cl) increases on passing from the symmetric Cl–I–Cl− (mean value 2.53 Å) to Cl–I–Br− (mean value 2.663 Å, Table 2) and Cl–I–I− (mean value 2.889 Å, Table 2) indicating an increase in the ionic character of this bond when the other terminal halogen changes from Cl to Br and to I. However, in all cases, the I–Cl bond lengths are strongly elongated with respect to the sum of the covalent radii (2.39 Å) [161] but remain fairly shorter than the sum of the van der Waals radii (3.73 Å) [161]. The structural features of I–I–Cl− and I–I–Br− (Table 2) indicate that the bond distance of the central atom with the lighter halogen is always longer than the I–I distance, in accordance with a different ionic character of the two bonds. In terms of the 3c-4e model (Scheme 1), the p orbitals of the two terminal halogens do not contribute equally to the three molecular orbitals of the three-body systems I–I–X− (X = Cl, Br, I). In fact, the p orbital of the terminal atom featuring the better energy match with the p orbital of the central halogen will contribute more to the bonding MO; vice versa, the other halogen will mainly contribute to the nonbonding MO, thus carrying most of the negative charge. As a consequence, the bond orders of the two bonds diverge from the value of 0.5, one increasing towards the value of 1 (I–I), and the other decreasing towards the value of 0 (I–X). In terms of the charge-transfer model (Scheme 2), asymmetric trihalides of the type X–Z ⋯ Y− derive from the donor/acceptor interaction between the halide (Y−) and the acceptor species (X–Z); the strength of this interaction will depend on the reciprocal energy levels of the combining orbitals (p of the halide and σ* MO of the dihalogen molecule).
Figure 2.
Scatter plot of d 1 versus d 2 for linear (angle > 165°) tribromides from a search of the CSD (71 structures containing 86 fragments). The mean bond lengthening is 11.3% with respect to the sum of the covalent radii.
Figure 3.
Scatter plot of d 1 versus d 2 for linear (angle > 165°) iododichlorides from a search of the CSD (46 structures containing 55 fragments). The mean bond lengthening is 9.2% with respect to the sum of the covalent radii.
Figure 4.
Scatter plot of d 1 versus d 2 for linear (angle > 165°) iododibromides from a search of the CSD (40 structures containing 56 fragments). The mean bond lengthening is 9.7% with respect to the sum of the covalent radii.
Table 2.
Structural features of all the less common X–Z–Y linear trihalides characterized by X-ray diffraction analysis.
| Compound reference code | X | Z | Y | d(X–Z)(Å) | d(Z–Y)(Å) | ∠X–Z–Y(°)* | References |
|---|---|---|---|---|---|---|---|
| CUPTIQ | Cl | Cl | Cl | 2.182 | 2.394 | 177.7 | [154, 155] |
| DEGLIK | Cl | Cl | Cl | 2.248 | 2.338 | 177.5 | [156] |
| PHASCL | Cl | Cl | Cl | 2.227 | 2.306 | 177.4 | [157] |
| UHUQAP | Cl | Cl | Cl | 2.144 | 2.419 | 178.1 | [158] |
| ZEHTIP | Cl | Cl | Cl | 2.262 | 2.307 | 178.4 | [160] |
| TEACBR | Cl | Br | Cl | 2.379 | 2.401 | 176.8 | [153] |
| DOBTUJ | Cl | I | Br | 2.648 | 2.651 | 179.6 | [112] |
| DOBTUJ04 | Cl | I | Br | 2.670 | 2.675 | 179.4 | [113] |
| DOBTUJ07 | Cl | I | Br | 2.673 | 2.665 | 179.6 | [114] |
| DOBTUJ08 | Cl | I | Br | 2.670 | 2.662 | 179.8 | [114] |
| BEQXEA | I | I | Cl | 2.737 | 3.040 | 172.1 | [110] |
| LACPUB | I | I | Cl | 2.765 | 2.739 | 179.3 | [111] |
| EKIHEL | I | I | Br | 2.890 | 2.906 | 178.7 | [8] |
| EYOVAP | I | I | Br | 2.857 | 2.950 | 179.3 | [9] |
| LACQAI | I | I | Br | 2.775 | 2.856 | 178.7 | [10] |
| LACQUEM | I | I | Br | 2.780 | 2.857 | 176.6 | [10] |
| WOPGOX | I | I | Br | 2.786 | 2.794 | 179.2 | [11] |
*The angle values are rounded off to the first decimal digit.
However, in all trihalides, independently of the different polarization of the two bonds the sum of the bond lengths (d X−Z + d Z−Y) is always at least 9% longer than the sum of the covalent radii of the involved atoms, thus indicating a hypervalent state of the central halogen.
4. TRICHALCOGEN(IDE)S
Table 3 collects the occurrence of linear E–E′–E″ (E, E′, E″ = chalcogen atom) trichalcogen organic fragments found in structurally characterized compounds, as retrieved from a search of the Cambridge Structural Database (CSD) by imposing either the presence of two covalent bonds between the chalcogen atoms or the presence of one covalent bond and a nonbonding contact shorter than ΣrVdW – 0.3 Å (E ⋯ E′–E″ and E–E′ ⋯ E″ fragments). In both searches, the linearity of the fragment has been imposed (∠E–E′–E″ > 165°).
Table 3.
Occurrence of linear trichalcogen E−E′−E″, E ⋯ E′E″, and E−E′ ⋯ E″ fragments crystallographically characterized from a search of the Cambridge Structural Database (number of crystal structures in parentheses).
| E′–E″ = | |||||||
|---|---|---|---|---|---|---|---|
|
| |||||||
| Te–Te | Te–Se | Te–S | Se–Se | Se–S | S–S | ||
| S | 3 (2)(a) | 4 (3)(b) | 207 (141)(c) | 12 (7)(d) | 16 (9)(e) | 100 (64)(f) | |
| E = | Se | 2 (2)(g) | 41 (24)(h) | ∗ | 64 (43)(i) | ∗ | — |
| Te | 39 (27)(1) | ∗ | ∗ | — | — | — | |
(a)References [162, 163]. (b)Reference [164]. (c)References [164–250]. (d)References [251–256]. (e)References [251, 256–264].
(f)References [265–314]. (g)References [315, 316]. (h)References [162, 165, 174, 181, 183, 209, 216, 223, 228, 238, 317–323].
(i)References [201, 324–342]. (1)References [343–356]. *These fragments are already considered in the table.
As one can see, some combinations of trichalcogen systems have never been reported and some others have been found only in a limited number of structures (Table 4).
Table 4.
Structural features of less common E−E′−E″, E ⋯ E′−E″, or E−E′ ⋯ E″ trichalcogenides characterized by X-ray diffraction analysis.
| Compound reference code | E | E′ | E″ | d(E–E′)(Å) | d(E′–E″) (Å) | ∠E–E′–E″(°)(b) | References |
|---|---|---|---|---|---|---|---|
| BUWZUO | S | Se | S | 2.266(a) | 3.001(a) | 172.2(a) | [259] |
| CEQKUE | S | Se | S | 2.549 | 2.549 | 180.0 | [260] |
| CUNWAJ | S | Se | S | 2.534(a) | 2.534(a) | 180.0(a) | [261] |
| DUBKUG | S | Se | S | 2.846(a) | 2.295(a) | 173.7(a) | [262] |
| FIKYUT | S | Se | S | 2.467 | 2.371 | 170.0 | [251] |
| KARZIM | S | Se | S | 2.896(a) | 2.282(a) | 172.0(a) | [263] |
| SETIOP | S | Se | S | 2.446 | 2.446 | 169.7 | [264] |
| WAXMAJ | S | Se | S | 3.302(a) | 2.229(a) | 169.2(a) | [256] |
| ZZZELOW01 | S | Se | S | 3.341 | 2.210 | 169.6 | [257] |
| SOSNIX | S | Se | Se | 3.002(a) | 2.308(a) | 167.3(a) | [253] |
| SOSNOD | S | Se | Se | 2.977(a) | 2.312(a) | 167.3(a) | [253] |
| NPHSET | S | Se | Se | 2.244 | 3.492 | 165.4 | [254] |
| WADVOM | S | Se | Se | 2.223 | 2.985 | 168.6 | [255] |
| WAXMAJ | S | Se | Se | 2.189 | 3.404 | 165.9 | [256] |
| FIKYON | S | Se | Se | 2.508 | 2.472 | 171.3 | [251] |
| ZENJEH | S | Se | Se | 2.498 | 2.466 | 173.6 | [252] |
| FEZHIB | S | Te | Se | 3.163 | 2.536 | 167.9 | [162] |
| FEZHUN | S | Te | Se | 2.592 | 2.872 | 175.3 | [162] |
| FEZJEZ | S | Te | Se | 3.002(a) | 2.609(a) | 173.4(a) | [164] |
| JOXYIE | S | Te | Te | 3.508(a) | 2.734(a) | 170.4(a) | [162] |
| SISQUG | S | Te | Te | 2.473 | 3.347 | 169.2 | [163] |
| SEURBR | Se | Se | Se | 2.712 | 2.624 | 173.9 | [337] |
| SEURSL | Se | Se | Se | 2.664 | 2.634 | 168.3 | [339] |
| SECLUR | Se | Se | Se | 2.717 | 2.597 | 173.8 | [337] |
| BAWFUA | Se | Te | Te | 2.561 | 3.611 | 176.1 | [315] |
| YOMRIB | Se | Te | Te | 2.468 | 3.559 | 173.3 | [316] |
| ZONWOO | O | Se | Se | 2.427(d) | 2.391 | 165.0 | [357, 358] |
(a)Mean values. (b)The angle values are rounded off to the first decimal digit.
(c)Triselenourea dications with different counterions. (d) d(O ⋯ Se).
The scatter plots of d(E–E′) versus d(E′–E″) for all trichalcogen fragments present in numerous crystal structures are shown in Figures 5–9.
Figure 5.
Scatter plot of d 1 versus d 2 for linear (angle > 165°) Te–Te–Te fragments from a search of the CSD. The symbol (♦) refers to the 23 Te–Te–Te fragments (19 structures) featuring bond distances ranging from Σrcov to (ΣrVdW–0.6); the symbol (°) refers to the 16 Te ⋯ Te–Te fragments (12 structures) featuring Te ⋯ Te contact distances shorter than (ΣrVdW–0.3). The mean bond lengthening within Te–Te–Te fragments is 11.5% (17.2% on Te ⋯ Te–Te fragments) with respect to the sum of the covalent radii.
Figure 9.
Scatter plot of d 1 versus d 2 for linear (angle > 165°) S–Te–S fragments from a search of the CSD. The symbol (♦) refers to the 187 S–Te–S fragments (127 structures) featuring bond distances ranging from Σrcov to (ΣrVdW – 0.6); the symbol (°) refers to the 20 S ⋯ Te–S fragments (14 structures) featuring S ⋯ Te contact distances shorter than (ΣrVdW – 0.3). The mean bond lengthening within S–Te–S fragments is 12.6% (21.0% on S ⋯ Te–S fragments) with respect to the sum of the covalent radii.
Similar to what found for trihalides, linear trichalcogen systems can vary from symmetric to very asymmetric ones, but always feature strongly correlated d(E–E′) and d(E′–E″) bond lengths. This indicates that also in linear trichalcogen E–E′–E″ organic fragments the potential energy hole should be fairly flat, being the chemical surrounding of the chalcogen atoms and the crystal packing effects able to freeze different structural situations. As mentioned above, in the case of 16th group elements, different closed-shell chalcogen species can interact to afford different types of linear trichalcogen systems (Scheme 6). However, since the analysis of all linear trichalcogen systems would go beyond the aim of this work, we will focus our attention only on some of them. When the closed-shell species are three E2− anions, the corresponding three-body systems will be E3 4−. Indeed, the linear Te3 4−, together with the “T-shaped” TeTe3 4−, and the square-planar TeTe4 6− anions are considered fundamental building units of numerous polytellurides [359]. The Te–Te bond distances in such tellurides show elongation of about 13% with respect to the sum of the covalent radii and are typical for 3c-4e bonds [359]. A symmetric (Se3)4− ion was identified for the first time in the samarium/selenide cluster [{(C5Me5)Sm}6Se11] [334], and considered a species isoelectronic to I3 −. The Se–Se bond length in this system (2.749 Å) is much longer than the mean bond length in (Se2)2− species (2.37 Å). This was justified by analogy with the couple I2/I3 −. Linear [E–E ⋯ E]4− systems (E= S,Se) have been found in Mo and W clusters [257, 335] containing two [M3(μ 3-E)(μ-E2)3 (dtc)3]+ cores (M = Mo, E = S, Se; M = W, E = Se) linked via an E2− anion; these arrangements have been described as μ−E2 2− dichalcogenides interacting with E2− at significantly short distances. In the case of selenium clusters [335], the two Se–Se bonds are 2.355 Å and 2.816 Å for the Mo cluster and 2.38 Å and 2.93 Å (mean values) for the W one, the short distances being only slightly elongated with respect to the Se–Se bond length in diselenides (2.34 Å). As found for strongly asymmetric trihalides, which are better described as an X− anion interacting with an X2 molecule (X− ⋯ X2), the trichalcogen systems in which the two bonds assume very different bond orders should be better described as a chalcogen donor (in the present case E2−) interacting with the σ* antibonding molecular orbital of a dichalcogen species [n(E) → σ*(E–E), in the present case E2 2 −]. In other words, the interaction should occur between a chalcogen donor and a 2c-2e dichalcogen bond system. In general, depending on the starting chalcogen donor and dichalcogen acceptor species, these trichalcogen systems can carry a variable charge, from negative values as in the above cases, up to 2+ when the donor species is a neutral molecule and the acceptor a dichalcogen dication.
Several monoanionic structures of the type (R–E)3 −, arising from three aligned R–E− anions, for example, (Ph–Te)3 − [343, 356], or [(CN)Se–Se(Ph)–Se(CN)]− [209], have been reported. Numerous are the hypervalent chalcogen compounds deriving from a neutral species interacting with two negatively charged monochalcogenides such as the case of 2,5-bis(morpholino-N)-4a-phenyl-1,3a,6,6a-tetrahydro-1,6,6a-triselena-4aλ 4-phospha-3,4-diazapentalene [332], or from a chalcogenide(2−) interacting with neutral molecules to form 1 or more 3c-4e systems, as in the case of the tetrakis(N-methylbenzo thiazole-2(3H)-selone)selenium(2+) dication reported by us in which two orthogonal 3c-4e fragments are present [342]. Particularly interesting are the two organic compounds FIKYON [251] and ZENJEH [252] (Table 4) containing the linear Se–Se–S arrangement. In fact, in both cases, the Se–Se bond is shorter than the Se–S one due to the poor energy match between the orbital of the central Se atom and that of the peripheral S atom. When the closed-shell species are S-, Se-, or Te-containing neutral molecules, dicationic species will be generated having the central atom in a hypervalent state. Among these systems, those having three S–S–S aligned sulphur atoms [265–314] have been found only in the class of the pincer-type molecules, with the central sulphur able to bind or to move apart the terminal ones by oxidation/reduction processes. It is noteworthy to observe that most of the molecules belonging to the E−E′−E pincer-type arrangments and many other trichalcogen systems are fairly symmetric, even if examples of strongly asymmetric situations are also numerous.
Although our discussion is limited to the structural features of linear trichalcogen fragments (various combinations of S, Se, and Te), we have also included in Table 4 the only known example of an organic dichalcogen dication system having a strong contact with an oxygen atom [357, 358]. X-ray analysis of this dication confirmed the linear geometry of the O–Se–Se moiety (165°) and an Se–Se bond (2.39 Å) which, similarly to what found in the above-described Mo and W clusters [257, 335], is only slightly elongated with respect to an Se–Se bond in diselenides (2.34 Å). This compound represents a good example of a hypervalent selenium compound having the two bonds strongly unbalanced (bond orders very far from the value of 0.5 expected for a balanced 3c-4e bond system). For this reason it resembles many other similar systems, such as the adduct of N,N′-dimethylimidazoline-2-selone with the pseudo-halogen ICN recently reported by us (see below in the last section); in both cases, one of the bonds tends to be a single bond, while the other bond is very elongated and tends to assume a purely ionic character.
5. DICHALCOGEN-HALIDES
Two chalcogen and one halogen atoms as closed-shell species can be aligned in only two possible ways: the halogen in the terminal (E−E′−X) or in the central (E−X−E′) position. Both arrangements are known and they will be discussed separately.
5.1. E−E′−X fragments
Table 5 shows the number of linear E−E′−X fragments crystallographically characterized from a search of the Cambridge Structural Database, by imposing the linearity of the system (∠E−E′−X angle > 165°) and either the presence of two covalent E−E′ and E′ – X bonds or the presence of one E−E′ covalent bond and one E′ ⋯ X nonbonding contact shorter than ΣrVdW– 0.3 Å.
Table 5.
Occurrence of linear E−E′−X and E−E′ ⋯ X fragments crystallographically characterized from a search of the Cambridge Structural Database (number of crystal structures in parentheses).(a)
| E–E′ = | |||||||
|---|---|---|---|---|---|---|---|
|
| |||||||
| Te–Te | Se–Te | S–Te | Se–Se | S–Se | S–S | ||
| Cl | 6 (3)(b) | 5 (5)(c) | 53 (39)(d) | 11 (8)(e) | 7 (6)(f) | 49 (21)(g) | |
| X = | Br | — | 17 (11)(h) | 35 (26)(i) | 23 (11)(j) | 4 (2)(k) | 47 (17)(l) |
| I | 19 (7)(m) | 4 (4)(n) | 20 (19)(o) | 5 (3)(p) | 3 (1)(q) | 32 (19)(r) | |
(a) Most of the structures have been found by imposing the presence of at least a contact between the E–E′ and X fragments (E–E′ ⋯ X) shorter than (ΣrVdW – 0.6). (b)References [360–362]. (c)References [317, 318, 363–365].
(d)References [173, 174, 188–190, 194, 200, 204, 205, 212, 213, 235, 244, 317, 363, 366–381]. (e)References [38, 360, 382–385].
(f)References [260, 386–389]. (g)References [390–410]. (h)References [317, 363, 364, 370, 411, 412].
(i)References [182, 196, 207, 212, 213, 232, 235, 317, 363, 365, 367, 372, 373, 377, 379, 413–418]. (j)References [38, 398, 419–425].
(k)Reference [386]. (l)References [398, 405, 426–433]. (m)References [434–438]. (n)References [214, 364, 439, 440].
(o)References [200, 213, 214, 235, 317, 372, 373, 378, 440–443]. (p)References [38, 444]. (q)Reference [383]. (r)References [399, 445–458].
It is interesting to note that in the case of the S–S–X fragment (X = Cl, Br, I) the number of structures characterized by the presence of a linear S–S ⋯ X moiety is considerably higher than that featuring the S–S–X one (17 versus 4). Fragments having fairly covalent bonds have been found exclusively as part of some molybdenum clusters [390, 391, 399, 401, 445–447]. These clusters are very similar to those previously described in the discussion of trichalcogenides species, with the difference that the halide takes the place of the bridging E2− anion. On the basis of their insolubility in water and their solubility in the common organic solvents, the authors concluded that the S–X bonds should be prevalently covalent in character. In fact, their structural features seem to be consistent with the presence of an [S–S–X]3− anion, deriving from the removal of a couple of electrons from the aligned S2−, S2−, and X− closed-shell species. The sum of the S–S and S–X bond lengths in these fragments is about 23% longer than the sum of the covalent radii and about 31% shorter than the sum of the van der Waals radii, in agreement with a 3c-4e bond model. The scatter plots of d(S–S) versu d(S–X) for both S–S–X and S–S ⋯ X (X = Cl, Br, I) fragments are shown in Figures 10, 11 and 12
Figure 10.
Scatter plot of d(S–S) versus d(S–Cl) for linear (angle > 165°) S–S–Cl fragments from a search of the CSD. The symbol (♦) refers to the 10 S–S–Cl fragments (4 structures) featuring bond distances ranging from Σrcov to (ΣrVdW – 0.6); the symbol (°) refers to the 39 S–S ⋯ Cl fragments (17 structures) featuring S ⋯ Cl contact distances shorter than (ΣrVdW – 0.3). The mean bond lengthening within S–S–Cl fragments is 21.5% (26.1% on S–S ⋯ Cl fragments) with respect to the sum of the covalent radii.
Figure 11.
Scatter plot of (S–S) versus (S–Br) for linear (angle > 165°) S–S–Br fragments from a search of the CSD. The symbol (°) refers to the 2 S–S–Br fragments (1 structure) featuring bond distances ranging from Σrcov to (ΣrVdW – 0.6); the symbol (°) refers to the 45 S–S ⋯ Br fragments (16 structures) featuring S ⋯ Br contact distances shorter than (ΣrVdW – 0.3). The mean bond lengthening within S–S–Br fragments is 21.1% (23.7% on S–S ⋯ Br fragments) with respect to the sum of the covalent radii.
Figure 12.
Scatter plot of d(S–S) versus d(S–I) for linear (angle > 165°) S–S–I fragments from a search of the CSD. The symbol (♦) refers to the 7 S–S–I fragments (4 structures) featuring bond distances ranging from Σrcov to (ΣrVdW–0.6); the symbol (°) refers to the 25 S–S ⋯ I fragments (11 structures) featuring S ⋯ I contact distances shorter than (ΣrVdW–0.3). The mean bond lengthening within S–S ⋯ I fragments is 19.2% (21.5% on S–S ⋯ I fragments) with respect to the sum of the covalent radii.
It appears very clear from the figures that the points (♦) related to the S–S–X fragments are not enough to establish the existence of a correlation between the two bond distances, and those (∘) related to the S–S ⋯ X fragments do not fit any correlation, since the S–S bond distances range in a very small interval of values around 2.05 Å (1.02 Å is the covalent radius of S), and the S ⋯ X contacts in a very wide interval of distances. These observations are more consistent with a description of these systems as deriving from donor/acceptor interactions between one of the p orbitals of X− and the σ* antibonding MO on the S–S system. In these systems the energy-match between the lone pair of X− and the σ* MO on S2 2− is very poor. The weak interaction is reflected in the corresponding very low lengthening of the S–S bond.
Numerous crystal structures have been reported in the literature that feature linear S–Te–X (X = Cl, Br, I) systems (references are collected in Table 5). Contrary to what found on searching the CSD for S–S–X fragments, for these linear arrangements, almost all the fragments feature covalent S–Te and Te–X bonds (S–Te–X systems). Only one structure containing an S–Te ⋯ Cl [244] moiety has been found by searching for S–Te ⋯ X systems [Σrcov − 0.6 < d(T ⋯ X) < (ΣrVdW − 0.3)]. As shown in Figures 13, 14, and 15, for these three series of compounds the two bonds are strictly correlated in wide ranges of variability.
Figure 13.
Scatter plot of d(S–Te) versus d(Te–Cl) for linear (angle > 165°) STeCl fragments from a search of the CSD. The symbol (♦) refers to the 52 S–Te–Cl fragments (38 structures) featuring bond distances ranging from Σrcov to (ΣrVdW–0.6)(°) refers to the 1 S–Te ⋯ Cl fragment (1 structure) featuring Te Cl contact distances shorter than (ΣrVdW–0.3). The mean bond lengthening within S–Te–Cl fragments is 10.8% (24.5% on S–Te ⋯ Cl fragment) with respect to the sum of the covalent radii.
Figure 14.
Scatter plot of d(S–Te)versus d(Te–Br) for the 52 linear (angle > 165°) S–Te–Br fragments (38 structures) featuring bond distances ranging from Σrcov to (ΣrVdW–0.6) from a search of the CSD. The mean bond lengthening within S–Te–Br fragments is 11.6% with respect to the sum of the covalent radii.
Figure 15.
Scatter plot of d(S–Te) versus d(Te–I) for the 20 linear (angle > 165°) S–Te–Br fragments (19 structures) featuring bond distances ranging from Σrcov to (ΣrVdW–0.6) from a search of the CSD. The mean bond lengthening within STeBr fragments is 7.3% with respect to the sum of the covalent radii.
The sum of S–Te and Te–X bond distances within these three-body systems is 10.8%, 11.6%, and 7.3% longer than the sum of the covalent radii for X = Cl, Br, and I, respectively, in good agreement with the hypervalent nature of the central tellurium atom. The other mixed dichalcogen fragments bonded to a halide, characterized by X-ray diffraction, are very few and they are collected in Table 6.
Table 6.
Structural features of the less common E−E′−X and E−E′⋯X (E,E′ = S,Se, X = halogen) linear three-body systems and of some selected E−E′−X (E = S,Se, E′ = Te, X = halogen) fragments.
| Compound reference code | E | E′ | X | d(E–E′) (Å) | d(E′–X)(Å) | ∠ E–E′–X(°)§ | References |
|---|---|---|---|---|---|---|---|
| BOYXAO10 | S | S | Cl | 2.040* | 2.915* | 169.6* | [390] |
| FAVDUB | S | S | Cl | 2.053* | 2.863* | 166.9* | [391] |
| KOJHOG | S | S | Cl | 2.047* | 2.933* | 170.4* | [399] |
| PIGWIL | S | S | Cl | 2.087 | 2.825 | 165.1 | [401] |
| 2.179 | 2.573 | 168.3 | |||||
| KOJHUM | S | S | Br | 2.056* | 3.028* | 171.5* | [399] |
| CIKHUZ10 | S | S | I | 2.057* | 3.168* | 171.2* | [445] |
| JAKWAT | S | S | I | 2.057* | 3.150* | 173.1* | [446] |
| KOJJEY | S | S | I | 2.066* | 3.175* | 172.6* | [399] |
| PEHHOZ | S | S | I | 2.051 | 3.180 | 172.8 | [447] |
| QADHOS | S | Se | I | 2.218* | 3.149* | 168.3* | [383] |
| MURXOM | S | Se | Br | 2.285* | 3.007* | 175.0* | [386] |
| MURYAZ | S | Se | Br | 2.258* | 3.094* | 174.3* | [386] |
| MURXIG | S | Se | Cl | 2.273* | 2.920* | 174.8* | [386] |
| MURXUS | S | Se | Cl | 2.252 | 2.976 | 172.8 | [386] |
| CEQKOY | S | Se | Cl | 2.215 | 3.276 | 178.5 | [260] |
| KAXWEL | S | Se | Cl | 2.293 | 3.237 | 168.8 | [387] |
| NEDBAZ | S | Se | Cl | 2.136 | 3.212 | 171.9 | [389] |
| TAVXET | Se | Se | Cl | 2.440 | 2.778 | 172.1 | [38] |
| TAVXIX | Se | Se | Br | 2.424 | 2.830 | 166.7 | [38] |
| PEBPUH | Se | Se | Br | 2.403 | 3.036 | 174.2 | [419] |
| WOHDUS | Se | Se | Br | 2.529* | 2.689* | 174,4* | [420] |
| EZOYIB | Se | Te | I | 2.906 | 2.889 | 177.7 | [439] |
| FOBCEE | Se | Te | I | 2.618 | 3.251 | 173.5 | [364] |
| ISEUTE | Se | Te | I | 2.679 | 3.095 | 177.3 | [440] |
| ROMXEW | Se | Te | I | 2.721 | 2.967 | 177.5 | [214] |
| BSEUTE | Se | Te | Br | 2.616 | 3.054 | 175.6 | [370] |
| DEVHAN | Se | Te | Br | 2.769 | 2.761 | 175.2 | [363] |
| FOBBIH | Se | Te | Br | 2.678 | 2.898 | 173.9 | [317] |
| FOBBIH01 | Se | Te | Br | 2.673* | 2.907* | 173.7* | [317] |
| FOBCAA | Se | Te | Br | 2.572* | 3.096* | 172.9* | [364] |
| FOBCAA01 | Se | Te | Br | 2.582 | 3.086 | 174.0 | [364] |
| FOBCAB | Se | Te | Br | 2.648 | 2.854 | 174.8 | [364] |
| KIKPID | Se | Te | Br | 2.496* | 3.244* | 168.6* | [411] |
| NAHWIC | Se | Te | Br | 2.704* | 2.810* | 175.0* | [412] |
| NAWOI | Se | Te | Br | 2.763 | 2.744 | 177.0 | [412] |
| FOWMAF | Se | Te | Br | 2.540 | 3.289 | 174.3 | [318] |
| DEVGUG | Se | Te | Cl | 2.783 | 2.600 | 174.7 | [363] |
| FOBBED | Se | Te | Cl | 2.678 | 2.752 | 172.8 | [317] |
| FOBBUT | Se | Te | Cl | 2.664 | 2.701 | 175.6 | [364] |
| GANHIM | Se | Te | Cl | 2.592 | 2.972 | 171.6 | [365] |
| BETDAG | Te | Te | I | 3.283 | 2.814 | 166.7 | [434] |
| HOJJEV | Te | Te | I | 3.163 | 2.831 | 176.1 | [435] |
| HOJJEV01 | Te | Te | I | 3.158 | 2.817 | 175.6 | [436] |
| HOSCAT | Te | Te | I | 2.669* | 3.369* | 169.0* | [437] |
| HOSCEX | Te | Te | I | 2.644* | 3.329* | 167.8* | [437] |
§The angle values are rounded off to the first decimal. *Mean values.
Differently from S–S–X, the S–Se–X fragments have been found in some dimeric structures with bridging halides [383, 386]. Also in these cases the sum of the S–Se and Se–X bond lengths shows elongation (∼19%) with respect to the sum of the covalent radii, and shortening (∼30%) with respect to the sum of the van der Waals radii. A certain number of structures characterized by the linear Se–Te–X system have also been found. It is noteworthy that the S–Te and Se–Te bonds get shortened as the Te–X bond becomes more ionic (on changing X from I to Br and to Cl, see the examples reported in Table 7), their bond orders approaching the value of 1.
Table 7.
Examples of the shortening of the S–Te and Se–Te bonds on passing from I to Br and to Cl derivatives.
|
*R = morpholino for X = Cl and Br; R = butyl for X = I.
In the case of the chloroderivatives E–Te ⋯ Cl (E = S, Se, Table 7), the S–Te and Se–Te bonds are only 0.077 Å and 0.080 Å longer than the sum of the covalent radii, making the structural features of these compounds similar to those of the fragments Se–Se ⋯ O [358] and NC–Se ⋯ I (see below in the last section). Finally, five structures containing the linear Te–Te–I arrangement have been reported in the literature; two of them [437] are inserted in molybdenum clusters in a fashion similar to that found for the S–S–X and Se–Se–X groups, two are arranged to form (Ph–Te–I)4 tetramers [435, 436] and only one, (Mes)2Te–Te(Mes)–I [434], can be considered as derived from the three aligned closed-shell Mes2Te, MesTe−, and I− species, by the removal of a couple of electrons. The analysis of the structural features of all these fragments is consistent with their description as three-body systems, the central Te atom being hypervalent.
5.2. E–X–E′ fragments
Table 8 collects the structural features of all the linear E–X–E′ (E, E′ = chalcogen atom; X = halogen) fragments found by searching the Cambridge Structural Database.
Table 8.
Structural features of all the dichalcogen-halogen (E–X–E′) fragments determined by X-ray diffraction analysis (the E–X ⋯ E′ fragments have not been reported).
| Compound reference code | E | X | E′ | d(E−X) (Å) | d(X−E′) (Å) | ∠E−X−E′(°)§ | References |
|---|---|---|---|---|---|---|---|
| HAKJAE | S | I | S | 2.601 | 2.634 | 175.0 | [459] |
| IBOCUX | S | I | S | 2.644 | 2.685 | 171.9 | [460] |
| IOENCO | S | I | S | 2.610 | 2.610 | 173.0 | [461] |
| ISUREA10 | S | I | S | 2.629 | 2.629 | 180.0 | [462] |
| LOPQAI | S | I | S | 2.638* | 2.618* | 179.0* | [463] |
| XORVRAB | S | I | S | 2.654 | 2.654 | 180.0 | [464] |
| GIGBED | S | I | S | 2.406 | 3.211 | 175.6 | [465] |
| DIJYUQ | Se | I | Se | 2.767 | 2.737 | 170.3 | [466] |
| EZOXUM | Se | I | Se | 2.765 | 2.765 | 180.0 | [467] |
| HAKHUW | Se | I | Se | 2.800 | 2.719 | 178.0 | [459] |
| CEMFAB10 | Te | I | Te | 3.124 | 3.100 | 189.0 | [468] |
| LAQZEI$ | Se | Cl | Se | 2.537 | 2.805 | 175.8 | [469] |
| GANGIL** | Se | Br | Se | 2.608 | 2.606 | 175.9 | [470] |
| VIYRIE** | Se | Br | Se | 2.615 | 2.573 | 176.1 | [471] |
| MUHGUR | Se | Br | Se | 3.089* | 3.083* | 178.8* | [472] |
| RIFNUP | Te | Cl | Te | 2.755 | 2.755 | 180.0 | [142] |
| ZUNJAT | Te | Cl | Te | 2.857 | 2.829 | 171.4 | [362] |
| RIWDUW‡ | Te | Cl | Te | 2.664* | 2.988* | 172.3* | [473] |
§The angle values are rounded off to the first decimal. *Mean values. **The Se–Br–Se arrangement is part of the Br14Se4 2− anion.
‡Polymeric structure. §The Se–Cl–Se arrangement is part of the SeCl5 − anion.
Systems of this type have been found with all the three halogens (Cl, Br, and I), and all the fragments have the same chalcogen (E = E′) atom at the two sides of the halogen; no mixed species (E≠E′) have been reported until now. Moreover, from the data in Table 8 it is interesting to note that with the exception of RIWDUW [473] which is polymeric and shows three different couples of fairly asymmetric Te–Cl bonds, all the other compounds feature the two chalcogen atoms bound to the central halogen in symmetric or only slightly asymmetric fashion, and most of the angles are very close to 180°. In all cases, the lengthening of the E–X bond with respect to the sum of the covalent radii (the mean S−I bond length calculated from the structural data of all six compounds characterized by the S−I−S group is elongated of about 17%), the shortening with respect to the van der Waals radii (the mean S−I bond length is shortened by ∼ 30%) and the linearity of the systems are consistent with the hypervalency of the central atom.
6. CHALCOGEN-DIHALIDES
Analogously to dichalcogen-halides, there are only two possibilities to build chalcogen-dihalides moieties: the chalcogen can be in the terminal (E–X–Y) or in the central (X–E–Y) position. These two arrangements correspond to the well-known CT and “T-shaped” adducts between chalcogen donors and dihalogens, respectively, and will be discussed separately.
6.1. E–X–Y fragments
For a more detailed discussion on this class of compounds the reader is referred to the review by Lippolis and Isaia [474]. The number of linear E–X–Y CT fragments crystallographically characterized from a search on the Cambridge Structural Database is reported in Table 9.
Table 9.
Occurrence of linear E–X–Y CT fragments crystallographically characterized from a search of the Cambridge Structural Database (number of crystal structures in parentheses).
|
(a)Only contacts. References [476–483].
(b)References [42, 444, 466, 484–498].
(c)References [47, 69, 108, 463, 464, 474, 490, 493, 496, 499–549].
(d)References [30, 42, 148]. (e)References [25, 47, 69, 510, 550–554].
(f)References [148, 555, 556]. (g)References [510, 553–555].
(h)Only contacts. References [480, 557, 558].
(i)Only the structure of [559] is a CT adduct.
(j)Only two structures are of the CT type.
As one can see most of the adducts are obtained between sulphur donors (D) and diiodine, on the contrary, no compounds of this type are known with Te donors (the only reported structures featuring a Te–I–I arrangement are characterized by long I ⋯ I contacts). The nσ(D)→σ*(XY) charge-transfer model accounts very well for the chemical bond in these E–X–Y systems. Scheme 2 can be easily adapted to any type of donor/acceptor couple [with the substitutions of n p with nσ(D) and σ*(X2) with σ*(XY)], bearing in mind that each couple will have a proper match of energy between the interacting orbitals. We will focus our attention on the adducts between sulfur donors and I2, since for them it is possible to fine tune the lone pair energy of the donor atom by changing its chemical surrounding; therefore any type of adduct from very weak to extremely strong can be obtained. In the case of very weak interactions, each fragment holds its identity with a small reciprocal perturbation; the effect of such perturbation on the halogen molecule consists in the lowering to some extent of its bond order. In terms of the simplified MO diagram reported in Scheme 2, weak adducts correspond to a poor energy match between the interacting nσ(D) and σ*(I2) MO orbitals. Most of adducts between sulfur compounds and I2 belong to the class of weak adducts. Since the stabilization of the adduct only depends on the in-phase combination of the interacting orbitals, which is bonding between the donor atom and the central iodine, and antibonding between the two iodine atoms, the two bond lengths are strictly correlated and a shortening in the D ⋯ I bond distance is accompanied by a lengthening in the I–I one. Without doubt, such types of adducts must be considered two-coordinate hypervalent compounds of iodine, like I3 −. However, there is a substantial difference between an I3 − and a D–I–I system; while in the case of I3 − the introduction of an asymmetry, by increasing removal of one terminal iodine as I−, generates in the limit case a strongly asymmetric I− ⋯ I2 system, in the case of the charge-transfer adducts, two different asymmetric systems can be generated depending on which bond, D ⋯ I or I ⋯ I, is the weakest one. They correspond to two different charge-transfer adducts: nσ(D)→σ*(I2) and nσ(I−)→σ*(I–D). It is possible to pass almost continuously from a balanced situation with the two bonds having a bond order value of about 0.5 [10-I-2 “hypervalent system” for analogy to I3 −], to the two different limit cases in which one bond assumes an increasingly ionic character. Consequently, also these limit cases featuring a strong asymmetry between the two bonds must be included among the 10-I-2 hypervalent compounds D–I+ ⋯ I− and D ⋯ I–I.
The scatter plot of d(S–I) versus d(I–I) relative to all the reported adducts between sulphur donors and diiodine is reported in Figure 16.
Figure 16.
Scatter plot of d(S–I) versus d(I–I) for linear (angle > 165°) S–I–I fragments from a search of the CSD. The symbol (♦) refers to the 67 S–I–I fragments (50 structures) featuring bond distances ranging from Σrcov to (ΣrVdW–0.6); the symbol (◊) refers to the 50 S ⋯ I–I fragments (38 structures) featuring S ⋯ I contact distances shorter than (ΣrVdW–0.3); the symbol (°) refers to the 3 S–I ⋯ I fragments (3 structures) featuring I ⋯ I contact distances shorter than (ΣrVdW–0.3). The mean bond lengthening within S–I–I fragments is 12.2% (19.2% on S ⋯ I–I, and 14.1% on S–I ⋯ I fragments, resp.) with respect to the sum of the covalent radii.
Apart for some dispersion of the data, which was also found for the other examined three-body systems, it clearly appears that the two bond lengths are strictly correlated in a wide range of values. 6 Similar correlations have been found in the case of adducts of selenium donors with diiodine (Figure 17) and sulfur donors with IBr (Figure 18), well represented in the literature. Due to the paucity of experimental data, no correlation is evident in the analogous scatter plots for the linear adducts of chalcogen donors with the other dihalogen/interhalogens molecules, including the case of d(Te–I) versus d(I ⋯ I). The structural features of less common linear adducts between chalcogen donors and dihalogen/interhalogens molecules are collected in Table 10.
Figure 17.
Scatter plot of d(Se–I) versus d(I–I) for linear (angle > 165°) Se–I–I fragments from a search of the CSD. The symbol (♦) refers to the 16 Se–I–I fragments (12 structures) featuring bond distances ranging from Σrcov to (ΣrVdW–0.6)(◊) refers to the 10 Se ⋯ I–I fragments (5 structures) featuring Se ⋯ I contact distances shorter than (ΣrVdW–0.3). the symbol (°) refers to the 6 Se–I ⋯ I fragments (6 structures) featuring I ⋯ I contact distances shorter than (ΣrVdW–0.3). The mean bond lengthening within Se–I–I fragments is 10.5% (12.4% on Se ⋯ I–I, and 14.4% on Se–I ⋯ I fragments, resp.) with respect to the sum of the covalent radii.
Figure 18.
Scatter plot of d(I–Br) versus d(S–I) for the 13 linear (angle > 165°) S–I–Br fragments (11 structures) featuring bond distances ranging from Σrcov to (ΣrVdW–0.6) from a search of the CSD. The mean bond lengthening within S–I–Br fragments is 10.5% with respect to the sum of the covalent radii.
Table 10.
Structural features of less common E–X–Y linear chalcogendihalides of the CT type, characterized by X-ray diffraction analysis.
| Compound reference code | E | X | Y | E–X (Å) | X–Y (Å) | ∠ E–X–Y(°)(a) | References |
|---|---|---|---|---|---|---|---|
| HAMCII | S | I | Cl | 2.534 | 2.761 | 176.4 | [510] |
| LIFXIH | S | I | Cl | 2.556 | 2.604 | 179.9 | [555] |
| NAHQIX | S | I | Cl | 2.575 | 2.558 | 176.1 | [553] |
| SIBJOC | S | I | Cl | 2.641 | 2.586 | 174.9 | [554] |
| RORNIV(b) | S | Br | Br | 2.299 | 2.717 | 175.0 | [562] |
| RORNIV01(b) | S | Br | Br | 2.328 | 2.705 | 176.0 | [63] |
| IRABEI(c) | Se | Br | Br | 2.645 | 2.358 | 174.2 | [559] |
| LIGFIQ | Se | I | Cl | 2.625 | 2.690 | 178.9 | [555] |
| LIGFIQ01 | Se | I | Cl | 2.618 | 2.690 | 178.7 | [148] |
| OXSEIC | Se | I | Cl | 2.630 | 2.731 | 175.8 | [556] |
| NOWLOA | Se | I | Br | 2.808 | 2.641 | 177.3 | [30] |
| NOWLUG | Se | I | Br | 2.664 | 2.797 | 175.8 | [30] |
| WIPPAM | Se | I | Br | 2.636 | 2.813 | 177.1 | [148] |
| YEYFIR | Se | I | Br | 2.689 | 2.908 | 176.9 | [42] |
(a)The angle values are rounded off to the first decimal. (b)Polymorphs. (c)This is the unique example of CT type adduct between a selenium donor with bromine: the formation of a Br–Se–Br group determines very favorable electronic and steric effects to prevent the formation of the same arrangement on the second selenium atom and to promote the CT type adduct. It must be noted that the Se ⋯ Br interaction is enough weak to determine a lengthening of the Br–Br bond of only 0.078 Å.
6.2. X–E–Y fragments
This arrangement corresponds to the well-known “T-shaped” adducts between chalcogen-donors and dihalogens. The numbers of linear X–E–Y fragments crystallographically characterized and found by searching the Cambridge Structural Database are reported in Table 11.
Table 11.
Occurrence of linear X–E–Y fragments crystallographically characterized from a search of the Cambridge Structural Database.
|
(a)References[142,169,173,180,181,184,188–190,203,206,217,219,233,240,360–362,368,373,374,376,381,473,480,481,565–699 (b)References [260, 325, 381, 469, 700–729]. (c)References [730–732]. (d)Reference [733]. (e)Reference [723]. (f)Reference [580]. (g)References [61, 183, 217, 220, 232, 233, 240, 318, 373, 411, 417, 480, 481, 558, 569, 574, 607, 615, 625, 627, 635, 651, 669, 675, 688, 691, 734–777].
(h)References [50, 76, 96, 419, 421, 470, 471, 700, 495, 559– 561, 718, 723, 724, 727, 752, 778– 799]. (i)References [47, 788, 800].
(j)Reference [801]. (k)Reference [802].
(l)References [183] [207] [220, 233, 240, 317, 373, 435, 442, 468, 476–483, 593, 635, 672, 680, 753, 770, 801, 803–829].
While all the dihalogens/interhalogens combinations with selenium and tellurium have been reported in the literature, only few X–S–X moieties (X = Cl, Br)7, and no X–S–Y (X ≠ Y = halogen atoms) arrangemets with sulphur as central atom are known. Indeed, sulphur donors show a preference to form linear charge-transfer type arrangement with the halogens (Table 9), absolutely unknown for the tellurium donors. Since several types of linear X–E–Y fragments are very numerous, the corresponding structural data are given as scatter plots of the two X–E and E–Y bond lengths (Figures 19, 20, 21, 22, and 23).
Figure 19.
Scatter plot of d 1 versus d 2 of the 113 linear (angle > 165°) I–Te–I fragments (71 structures) featuring bond distances ranging from Σrcov to (ΣrVdW–0.6) from a search of the CSD. The mean bond lengthening within I–Te–I fragments is 9.3% with respect to the sum of the covalent radii.
Figure 20.
Scatter plot of d 1 versus d 2 of the 170 linear (angle > 165°) Br–Te–Br fragments (84 structures) featuring bond distances ranging from Σrcov to (ΣrVdW–0.6) from a search of the CSD. The mean bond lengthening within Br–Te–Br fragments is 8.1% with respect to the sum of the covalent radii.
Figure 21.
Scatter plot of d 1 versus d 2 for the 405 linear (angle > 165°) Cl–Te–Cl fragments (174 structures) featuring bond distances ranging from Σrcov to (ΣrVdW–0.6) from a search of the CSD. The mean bond lengthening within Cl–Te–Cl fragments is 8.0% with respect to the sum of the covalent radii.
Figure 22.
Scatter plot of versus for the 141 linear (angle > 165°) Br–Se–Br fragments (63 structures) featuring bond distances ranging from Σrcov to (ΣrVdW–0.6) from a search of the CSD. The mean bond lengthening within Br–Se–Br fragments is 12.9% with respect to the sum of the covalent radii.
Figure 23.
Scatter plot of versus for the 130 linear (angle > 165°) Cl–Se–Cl fragments (51 structures) featuring bond distances ranging from Σrcov to (ΣrVdW–0.6) from a search of the CSD. The mean bond lengthening within Cl–Se–Cl fragments is 13.8% with respect to the sum of the covalent radii.
As one can see, there is a high dispersion of points in the scatter plots; however, in all the analyzed three-body systems the two bond lengths can be considered correlated and both strongly asymmetric and symmetric fragments can be found.
In Table 12, the structural features of less common X–E–Y fragments are reported; there are six examples of hypervalent chalcogen atoms bonded to two different halogen atoms, and, as already said, none of them features a central sulphur atom. It is interesting to note that in such systems the bond between the chalcogen and the lighter halogen is much more elongated with respect to the sum of the covalent radii (more ionic bond) than that involving the heavier halogen. In SUSMIC and in IDAZUI, Se–Cl and Se–Br are even longer than Se–Br and Se–I, respectively.
Table 12.
Structural features of the less common X–E–Y linear chalcogendihalides characterized by X-ray diffraction analysis.
| Compound reference code | X | E | Y | d(X−E) (Å) | d(E−Y) (Å) | ∠ X–E–Y(°)(a) | References |
|---|---|---|---|---|---|---|---|
| CFMBXT | Cl | S | Cl | 2.126 | 2.552 | 167.6 | [730] |
| CLPHSC10 | Cl | S | Cl | 2.256 | 2.322 | 174.9 | [731] |
| TOSXII | Cl | S | Cl | 2.341 | 2.384 | 166.3 | [732] |
| TOSXOO | Cl | S | Cl | 2.295 | 2.365 | 175.9 | [732] |
| BIMMAL | Br | S | Br | 2.437 | 2.495 | 171.6 | [47] |
| MIMZDB | Br | S | Br | 2.451 | 2.538 | 176.9 | [800] |
| OBUQEH | Br | S | Br | 2.493 | 2.493 | 179.4 | [788] |
| SUSMIC | Cl | Se | Br | 2.802(b) | 2.412(b) | 173.3(b) | [723] |
| SUSNAV | Cl | Se | Br | 2.466 | 2.571 | 176.2 | [793] |
| IDAZUI(c) | Br | Se | I | 2.831(b) | 2.618(b) | 174.6(b) | [802] |
| GEPPUM | I | Se | I | 2.756 | 2.850 | 176.3 | [486] |
| HELDUX | I | Se | I | 2.768 | 2.854 | 175.4 | [830] |
| ZOBDID | I | Se | I | 2.738 | 2.886 | 178.6 | [498] |
| ZOBDUP | I | Se | I | 2.743 | 2.900 | 177.5 | [498] |
| XAGVIK | Cl | Te | Br | 2.659 | 2.577 | 169.9 | [733] |
| CEFREX | Br | Te | I | 2.868 | 2.903 | 177.9 | [580] |
(a)The angle values are rounded off to the first decimal. (b)Mean values. (c)This compound is the unique example of Se-hypervalent compound with IBr. Note that the mean value of the Se–I bond length is shorter than the Se–Br one.
7. CHALCOGEN · XCN (X = HALOGEN) ADDUCTS
As reported before, we wish also to consider in this discussion “T-shaped” adducts obtained from the reaction between chalcogen donors and pseudo-halogens X–CN (X=Cl, Br and I). Some compounds characterized by X-ray diffraction analysis and featuring X–E–CN moieties (X = halogen, E = chalcogen) are collected in Table 13.
Table 13.
Structural features of all the T-shaped compounds containing the X ⋯ E–CN fragment (E = chalcogen; X = halogen) from a search of the Cambridge Structural Database.
| Compound reference code | X | E | X ⋯ E (Å) | E–CN (Å) | ∠ X ⋯ E–Y(°) | References |
|---|---|---|---|---|---|---|
| BOJPUL | Cl | Te | 2.924 | 2.140 | 167.9 | [831] |
| BOJRAT | Br | Te | 3.100 | 2.131 | 167.6 | [831] |
| BOJREX | I | Te | 3.299 | 2.143 | 170.9 | [831] |
| CYMIMB(a) | Br | S | 3.588(a) | 1.757 | 159.8 | [800] |
| EZUZII | I | Se | 3.300 | 1.885 | 174.8 | [832] |
(a)This compound has not been found searching the Cambridge Structural Database, but has been included in the table for the strict similarity with EZUZII. In CYMIMB, the shorter S ⋯ Br distance (3.270 Å) is that of the bromide in trans position with respect to the pentaatomic ring of the donor and not to the CN group.
The compound CYMIMB, reported by Arduengo and Burgess [800], has been included in the table for its strict similarity with EZUZII, reported by us [832]. Both compounds have a “T-shaped” arrangement around the chalcogen atom and are characterized by very different E–X and E–CN bond lengths; the chalcogen-carbon bond is only sligthly elongated with respect to the sum of covalent radii (bond order close to 1) and the chalcogen-halogen bond is close to be a completely ionic bond. These compounds closely resemble many asymmetric systems above decribed and in particular the pincer-type molecule bearing the O ⋯ Se–Se group (Table 4). The closeness of the chalcogen–CN and the Se–Se bond distances to the corresponding single bonds, respectively, and the long chalcogen-halogen and selenium-oxygen distances, strongly support the analogy between these two classes of compounds. According to the 3c-4e model, the different energy levels of the three combined p orbitals (there is a good overlap between the orbitals from E and C due to a good match of their energies) produce a bonding MO having a small contribution of the p orbital of the halogen, which vice versa mainly contributes to the nonbonding orbital, thus carrying most of the negative charge. In terms of the charge-transfer model, all the compounds of this type can be properly described as originated by a very weak donation from one halide orbital to the E–CN antibonding orbital (e.g., nσ(I−)→σ*(E–CN)); the weak interaction has the consequence of a small lengthening in the E–CN bond distance, exactly as verified in numerous adducts between weak S donors and diiodine.
8. CONCLUSION
On the basis of this overview on the structural features of linear three-body systems, involving 16th and 17th group elements, the following conclusions can be drawn.
The Rundle-Pimentel model for electron-rich 3-centre 4-electron systems and the charge-transfer model represent two different approaches able to account for the structural features of these linear three-body systems.
The Rundle-Pimentel model can be adapted to any set of three aligned atoms, positioning the combining orbitals at the appropriate levels of energy.
Since three aligned closed-shell atoms can find stabilization only if two electrons are removed from the system, ideally any type of sequence of atoms could be obtained.
The variability of starting molecules is reflected in the great variety of obtainable structural archetypes. Since a starting molecule can be also a species containing a hypervalent atom, its alignment with other closed-shell species produces molecules in which two or three orthogonal 3c-4e systems are simultaneous present. This is for example the case of anions such as Ph–SeBr4 − or SeBr6 2−.
The Rundle-Pimentel model very well accounts for the 0.5 bond order in symmetric three-body systems since only the lowest MO contributes to the bond formation. In addition, the Rundle-Pimentel model elegantly explains why the two terminal atoms carry more negative charge (or less positive charge for positively charged systems) even in the cases of three identical atoms [such as I3 − or E(R2) E(R2)E(R2)2+ dications].
In these three-body systems, the energy match between the p orbital of the central atom and those of the terminal ones influences the polarization of the formed bonds. This is very important for systems having different terminal atoms: each p orbital will contribute differently to the three molecular orbitals with the consequence of an increased unbalance of the two bonds as the electronegativity difference between the involved elements increases. In such cases, the bond orders of the two bonds diverge from the value of 0.5, one approaching the value of 1 and the other that of 0.
The strict analogy among all these systems, including the strongly asymmetric ones as the “T-shaped” adduct between the N,N′-dimethylimidazoline-2-selone and ICN, supports the hypervalent nature of the selenium atom in this compound in spite of the fact that the bond orders of the two bonds are very different.
The charge-transfer model explains very well all the very asymmetric systems since this model corresponds to the interaction of two stable fragments (as a dihalogen molecule with a halide, or as chalcogen donor with a dichalcogen dication).
The energy match between the interacting orbitals of the two fragments (such as a hybrid orbital of the donor and the σ* antibonding molecular orbital of the acceptor) determines the entity of the interaction.
In the CT model, the bond order of 0.5 for the two bonds is reached when the interacting orbitals are at the same level of energy. This corresponds to the introduction of 1 electron on the σ* MO of the acceptor, with the consequent reduction of the bond order from 1 to 0.5.
An aspect to be emphasized is the fact that in all the structures of these families of compounds, including the very asymmetric systems, the three-body system is always linear, with angles generally larger than 170° . The directionality of the bond is maintained also in presence of strongly unbalanced bonds indicating a valuable contribution of covalence, due to the nσ donor → σ*acceptor charge-transfer interaction and supporting the hypervalent character of the central chalcogen atom, independently on the entity of the asymmetry.
Finally, it is interesting to observe that with only few exception, the systems having different terminal atoms (see, e.g., trihalides X–Z–Y with X≠Y or trichalcogenides E−E′−E″ with E≠ E″) are less common than the symmetric ones.
Figure 6.
Scatter plot of d 1 versus d 2 for linear (angle > 165°) Se–Se–Se fragments from a search of the CSD. The symbol (♦) refers to the 35 Se–Se–Se fragments (22 structures) featuring bond distances ranging from Σrcov to (ΣrVdW – 0.6); the symbol (°) refers to the 29 Se ⋯ Se–Se fragments (21 structures) featuring Se Se contact distances shorter than (ΣrVdW – 0.3). The mean bond lengthening within Se–Se–Se fragments is 13.9% (21.5% on Se ⋯ Se–Se fragments) with respect to the sum of the covalent radii.
Figure 7.
Scatter plot of d 1 versus d 2 for linear (angle > 165°) S–S–S fragments from a search of the CSD. The symbol (♦) refers to the 48 S–S–S fragments (40 structures) featuring bond distances ranging from Σrcov to (ΣrVdW – 0.6); the symbol (°) refers to the 52 S ⋯ S–S fragments (24 structures) featuring S ⋯ S contact distances shorter than (ΣrVdW – 0.3). The mean bond lengthening within S–S–S fragments is 15.5% (28.6% on S ⋯ S–S fragments) with respect to the sum of the covalent radii.
Figure 8.
Scatter plot of d 1 versus d 2 for linear (angle > 165°) Se–Te–Se fragments from a search of the CSD. The symbol (♦) refers to the 39 Se–Te–Se fragments (22 structures) featuring bond distances ranging from Σrcov to (ΣrVdW – 0.6); the symbol (°) refers to the 2 Se ⋯ Te–Se fragments (2 structures) featuring Se ⋯ Te contact distances shorter than (ΣrVdW – 0.3). The mean bond lengthening within Se–Te–Se fragments is 11.5% (16.1% on Se ⋯ Te–Se fragments) with respect to the sum of the covalent radii.
Footnotes
1However, in the construction of the simplified MO diagram for the donor/acceptor interaction (first approximation; Scheme 2), the combination of the donor orbital with only the σ* MO of X2, leaving unchanged the σ b level, is justified fairly well by a good match of energy between the lone pair of X− and the σ* MO of X2.
2In the case of 17th group elements, not only X−but also R′ − X (R′ represents a generic fragment featuring whichever element bonded to the halogen such as C–X, P–X,…) closed-shell species could be considered in the formation of three-body systems; however, these cases are not considered here in order to limit the discussion.
3As an exception, we will also consider the pseudo-halogens X–CN (X= halogen atom, see below in the last section).
4Only covalent bonded linear X–Y–Z fragments (angles > 165°) have been considered in subsequent analyses.
5A discussion on the factors responsible for the spreading of some data out of the correlation in Figure 1 is out of the aim of this work.
6The points having the S–I distance higher than 3.0 Å refer to quite different systems having the diiodine molecule bridging two donor molecules.
7 A peculiar case is represented by a byproduct of the reaction between the neutral dithiolene [Pd(Et2timdt)2] (Et2timdt = formally monoreduced diethylimidazolidine-2,4,5-trithione) and an excess of bromine, [(Et2timdt)Br]2 +2(Br−)2 ⋅ (Br2)3, containing two [L–S–Br]+ thione-bromosulfanyl cations [475]. We described this compound as ionic couples formed by the organic framework bearing a double positive charge and the two terminal S–Br bonds, and the two Br− ions which are positioned next to the sulfur atoms to afford two very asymmetric linear Br–S Br moieties. The strong asymmetry is Br moieties. The strong asymmetry is determined by several contacts between the Br− and Br2 molecules. Thus, each Br− lies in a pseudo-octahedral environment determined by four Br2 molecules and two S–Br groups all acting as acceptors of the Br− electron density. It is interesting to note that the Br2 molecules are so firmly held in the crystal that after one year at room temperature and at air the crystals were unchanged without loss of bromine. The great stability of the Br2 molecules within the crystal lattice can be explained in terms of donor/acceptor interaction between Br− and six σ* antibonding molecular orbitals of four Br2 molecules and two S–Br terminal groups. This type of linear interaction np(Br−) → σ*(Br2) is different from that observed in the solid Br2 or I2 where the halogen molecules interact each other at 90° through a π*(X2) → σ* (X2) donation (X = Br, I).
References
- 1.Akiba K-Y, editor. Chemistry of Hypervalent Compounds. New York, NY, USA: Wiley-VCH; 1999. [Google Scholar]
- 2.Landrum GA, Goldberg N, Hoffmann R. Bonding in the trihalides (X3 −), mixed trihalides (X2Y−) and hydrogen bihalides (X2H−). The connection between hypervalent, electron-rich three-center, donor-acceptor and strong hydrogen bonding. Journal of the Chemical Society, Dalton Transactions. 1997;(19):3605–3613. [Google Scholar]
- 3.Svensson PH, Kloo L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chemical Reviews. 2003;103(5):1649–1684. doi: 10.1021/cr0204101. [DOI] [PubMed] [Google Scholar]
- 4.Nakanishi W. Hypervalent chalcogen compounds. In: Devillanova FA, editor. Handbook of Chalcogen Chemistry, New Perspectives in Sulfur, Selenium and Tellurium. London, UK: Royal Society of Chemistry; 2006. chapter 10.3. [Google Scholar]
- 5.Perkins CW, Martin JC, Arduengo AJ, Law W, Alegrie A, Kocki JK. An electrically neutral σ-sulfuranyl radical from the homolysis of a perester with neighboring sulfenyl sulfur: 9-S-3 species. Journal of the American Chemical Society. 1980;102(26):7753–7759. [Google Scholar]
- 6.Hackand RJ, Rundle RE. The structure of tetramethylammonium Pentaiodide1, 1a . Journal of the American Chemical Society. 1951;73(9):4321–4324. [Google Scholar]
- 7.Pimentel GC. The bonding of trihalide and bifluoride ions by the molecular orbital method. The Journal of Chemical Physics. 1951;19(4):446–448. [Google Scholar]
- 8.Mas-Torrent M, Ribera E, Tkacheva V, et al. New molecular conductors based on ETEDT-TTF trihalides: from single crystals to conducting layers of nanocrystals. Chemistry of Materials. 2002;14(8):3295–3304. [Google Scholar]
- 9.Kazheva ON, Aleksandrov GG, D'yachenko OA, Chernov'yants MS, Simonyan SS, Lykova EO. Crystal and molecular structures of 3-carboxypropyltriphenylphosphonium diiodobromide. Koordinatsionnaya Khimiya. 2003;29(12):883–892. [Google Scholar]
- 10.Shilov GV, Kazheva ON, D'yachenko OA, et al. The synthesis, structure, and stability of N-cetylpyridinium interhalides: an experimental and quantum-chemical study. Zhurnal Fizicheskoj Khimii. 2002;76(8):1436–1444. [Google Scholar]
- 11.Baker PK, Drew MGB, Meehan MM. The first iodine induced halide abstraction reaction: synthesis and molecular structure of fac-[Re(CO)3(NCMe)3] ⋅ BrI2 . Inorganic Chemistry Communications. 2000;3(7):393–396. [Google Scholar]
- 12.Domercq B, Devic T, Fourmigué M, Auban-Senzier P, Canadell E. Hal ⋯ Hal interactions in a series of three isostructural salts of halogenated tetrathiafulvalenes. Contribution of the halogen atoms to the HOMO-HOMO overlap interactions. Journal of Materials Chemistry. 2001;11(6):1570–1575. [Google Scholar]
- 13.Williams JM, Wang HH, Beno MA, et al. Ambient-pressure superconductivity at 2.7 K and higher temperatures in derivatives of (BEDT-TTF)2IBr2: synthesis, structure, and detection of superconductivity. Inorganic Chemistry. 1984;23(24):3839–3841. [Google Scholar]
- 14.Endres H, Hiller M, Keller HJ, et al. Zeitschrift für Naturforschung, Section B. 1985;40:164. [Google Scholar]
- 15.Shibaeva RP, Lobkovskaya RM, Simonov MA, Yagubskii EB, Ignat'ev AA. Crystallography Reports. 1986;31:1105. [Google Scholar]
- 16.Parlow A, Hartl H. Syntheses and structure analyses of polyhalides in the system iodine/bromine. Zeitschrift für Naturforschung. 1985;40(1):45–52. [Google Scholar]
- 17.Svensson PH, Kioo L. A vibrational spectroscopic, structural and quantum chemical study of the triiodide ion. Journal of the Chemical Society, Dalton Transactions. 2000;(14):2449–2455. [Google Scholar]
- 18.Gardberg AS, Yang S, Hoffman BM, Ibers JA. Synthesis and structural characterization of integrally oxidized, metal-free phthalocyanine compounds: [H2(pc)][IBr2] and [H2(pc)]2[IBr2]Br ⋅ C10H7Br . Inorganic Chemistry. 2002;41(7):1778–1781. doi: 10.1021/ic010994+. [DOI] [PubMed] [Google Scholar]
- 19.Terzis A, Papavassiliou G, Kobayashi H, Kobayashi A. Structure of the conducting salt of pyrazinoethylenedithiotetrathiafulvalene (PEDTTTF): α−(PEDTTTF)2IBr2, at 98 K. Acta Crystallographica, Section C. 1989;45(4):683–685. [Google Scholar]
- 20.Terzis A, Psycharis V, Hountas A, Papavassiliou G. Acta Crystallographica, Section C. 1988;44:128. [Google Scholar]
- 21.Honda K, Goto M, Kurahashi M, Anzai H, Tokumoto M, Ishiguro T. The crystal structure of a charge-transfer complex of tetrakis(methylthio)tetrathiafulvalenium dibromoiodate, TMT-TTF-IBr2 . Bulletin of the Chemical Society of Japan. 1988;61(2):588–590. [Google Scholar]
- 22.Bigoli F, Deplano P, Mercuri ML, et al. Novel oxidation and reduction products of the neutral nickel-dithiolene Ni(Pr2 itimdt)2 (Pr2 itimdt is the monoanion of 1,3-diisopropylimidazolidine-2,4,5-trithione) Inorganica Chimica Acta. 1998;273(1-2):175–183. [Google Scholar]
- 23.Raptis RG, Murray HH, Staples RJ, Porter LC, Fackler JP., Jr Structural isomers of [Au(CH2)2PPh2]2Br4 2. Crystal structures of cis/cis-[Au(CH2)2PPh2]2Br4 and the cationic A-frame [(μ−Br)(Au(CH2)2PPh2)2Br2][IBr2] . Inorganic Chemistry. 1993;32(24):5576–5581. [Google Scholar]
- 24.Kini AM, Parakka JP, Geiser U, et al. Tetraalkyl- and dialkyl-substituted BEDT-TTF derivatives and their cation-radical salts: synthesis, structure, and properties. Journal of Materials Chemistry. 1999;9(4):883–892. [Google Scholar]
- 25.Cau L, Deplano P, Marchiò L, et al. New powerful reagents based on dihalogen/N,N′- dimethylperhydrodiazepine-2,3-dithione adducts for gold dissolution: the IBr case. Dalton Transactions. 2003;(10):1969–1974. [Google Scholar]
- 26.Shibaeva RP, Rozenberg LP, Korotkov VE, et al. Crystallography Reports. 1989;34:1438. [Google Scholar]
- 27.Lykova EO, Chernov'yants MS, Kazheva ON, Chekhlov AN, D'yachenko OA. The synthesis, structure, and stability of diiodobromides of N-substituted isoquinolinium derivatives. Zhurnal Fizicheskoj Khimii. 2004;78(11):2022–2026. [Google Scholar]
- 28.Akutagawa T, Abe Y, Hasegawa T, et al. Crystal structures and optical properties of cation radical salts of a tetrathiafulvalene trisannulated macrocycle. Journal of Materials Chemistry. 1999;9(11):2737–2742. [Google Scholar]
- 29.Blake AJ, Gilby LM, Gould RO, Lippolis V, Parsons S, Schröder M. Macrocyclic thioether complexes of palladium with dibromoiodide anions. Acta Crystallographica, Section C. 1998;54(3):295–298. [Google Scholar]
- 30.Godfrey SM, McAuliffe CA, Pritchard RG, Sarwar S. Structural characterization of the diorganoselenium interhalogen compounds R2SeIBr (R=Ph or Me) and the ionic compound [Me3Se][IBr2] . Journal of the Chemical Society, Dalton Transactions. 1997;(19):3501–3504. [Google Scholar]
- 31.Bekaert A, Barberan O, Kaloun EB, et al. Crystal structure of tetrakis(N,N-dimethylacetamide-O)borane tris(dibromoiodide), {B[CH3CON(CH3)2)]4}(Br2I)3 . Zeitschrift für Kristallographie: New Crystal Structures. 2003;218(1):123–124. [Google Scholar]
- 32.Naito T, Tateno A, Udagawa T, et al. Synthesis, structures and electrical properties of the charge-transfer salts of 4,5-ethylenedithio-4′,5′-(2-oxatrimethylenedithio)diselenadithiafulvalene (EOST) with linear anions [I3 − ,IBr2 −,ICl2 −,I2Br−,AuBr2 −,Au(CN)2 −] . Journal of the Chemical Society, Faraday Transactions. 1994;90:763–771. [Google Scholar]
- 33.Minkwitz R, Berkei M, Ludwig R. Preparation and crystal structure of tetraphenylphosphonium triiodotetrabromide [PPh4][I3 Br4] . Inorganic Chemistry. 2001;40(1):25–28. doi: 10.1021/ic000257y. [DOI] [PubMed] [Google Scholar]
- 34.Breneman GL. private communication, 2000.
- 35.Dautel OJ, Fourmigué M, Canadell E. Activation of C-H ⋯ halogen (Cl, Br, and I) hydrogen bonds at the organic/inorganic interface in fIuorinated tetrathiafulvalenes salts. Chemistry - A European Journal. 2001;7(12):2635–2643. doi: 10.1002/1521-3765(20010618)7:12<2635::aid-chem26350>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
- 36.Wang HH, Montgomery LK, Geiser U, et al. Syntheses, structures, selected physical properties and band electronic structures of the bis(ethylenediseleno)tetrathiafulvalene salts, (BEDSe-TTF)2X, X− = I3 −, AuI2 −, and IBr2 − . Chemistry of Materials. 1989;1(1):140–148. [Google Scholar]
- 37.Terzis A, Hountas A, Papavassiliou GC, Hilti B, Pfeiffer J. Structures and conductivities of the synthetic metal salts of ethylenedithiotetrathiafulvalene (EDTTTF) and ethylenedithiodiselenadithiafulvalene (EDTDSDTF): 211-(EDTTTF)2IBr2 , 211-(EDTDSDTF)2IBr2 and 212-(EDTTTF)2AuBr2 . Acta Crystallographica, Section C. 1990;46(2):224–228. [Google Scholar]
- 38.Bigoli F, Demartin F, Deplano P, et al. Synthesis, characterization, and crystal structures of new dications bearing the -Se-Se- bridge. Inorganic Chemistry. 1996;35(11):3194–3201. doi: 10.1021/ic9510019. [DOI] [PubMed] [Google Scholar]
- 39.Müller U. Zeitschrift für Naturforschung, Section B. 1979;34:1064. doi: 10.1515/znc-1979-1-211. [DOI] [PubMed] [Google Scholar]
- 40.Janczak J, Kubiak R. Sandwich-type niobium(V) diphthalocyaninato complexes ‘stapled’ by two inter-ligand C—C σ-bonds. Synthesis and structural investigations of two new phthalocyaninato complexes: [NbPc2](IBr2) and [NbPc2](IBr2) ⋅ I2 . Polyhedron. 2003;22(2):313–322. [Google Scholar]
- 41.Korotkov VE, Shibaeva RP. Crystallography Reports. 1991;36:1139. [Google Scholar]
- 42.Cristiani F, Demartin F, Devillanova FA, Isaia F, Lippolis V, Verani G. Charge-transfer complexes of N-Methylthiazolidine-2(3H)-selone (1) and N-Methylbenzothiazole-2(3H)-selone (2) with I2 and IBr: crystal structures of 11 ⋅ I2, 1.Br0.75, 2⋅ 2I2, and 2 ⋅ 2IBr . Inorganic Chemistry. 1994;33(26):6315–6324. [Google Scholar]
- 43.Tateno A, Udagawa T, Naito T, Kobayashi H, Kobayashi A, Nogami T. Crystal structures and electrical properties of the radical salts of the unsymmetrical donor EOTT [4,5-ethylenedithio-4′,5′-(2-oxatrimethylenedithio)tetrathiafulvalene] . Journal of Materials Chemistry. 1994;4:1559–1569. [Google Scholar]
- 44.Hoskins BF, Robson R, Williams GA. Complexes of binucleating ligands. VIII. The preparation, structure and properties of some mixed valence cobalt(II)—cobalt(III) complexes of a macrocyclic binucleating ligand. Inorganica Chimica Acta. 1976;16:121–133. [Google Scholar]
- 45.Wolmershauser G, Kruger C, Tsay Y-H. Chemische Berichte. 1982;115:1126. [Google Scholar]
- 46.Bogaard MP, Rae AD. Crystal Structure Communications. 1982;11:175. [Google Scholar]
- 47.Bricklebank N, Skabara PJ, Hibbs DE, Hursthouse MB, Malik KMA. Reaction of thiones with dihalogens; comparison of the solid state structures of 4,5-bis(methylsulfanyl)-1,3-dithiole-2-thione-diiodine, -dibromine and -iodine monobromide. Journal of the Chemical Society, Dalton Transactions. 1999;(17):3007–3014. [Google Scholar]
- 48.Maas G, Hoge R. Liebigs Annalen. 1980:1028. [Google Scholar]
- 49.Andresen O, Rømming C. Acta Chemica Scandinavica. 1962;16:1882. [Google Scholar]
- 50.Boyle PD, Cross WI, Godfrey SM, McAuliffe CA, Pritchard RG, Teat SJ. Reaction of dimethylselenourea and selenourea with dibromine to produce selenourea-dibromine, the ‘T’-shaped 1:1 molecular adduct N,N-dimethyl-2-selenourea-dibromine, its solvent of crystallisation-containing analogue and the unusual ionic compound. Journal of the Chemical Society, Dalton Transactions. 1999;(16):2845–2852. [Google Scholar]
- 51.Burford N, Chivers T, Rao MNS, Richardson JF. Oxidative addition of halogens to 1,3- and 1,5-(Ph2PN)2(SN)2: X-ray crystal structure of 1,5-(Ph2PN)2(NSBr)2 and a comparison of the crystal structures of the 12-membered ring 1,3,7,9-(Ph2PN)2(SN)2 and the corresponding dication (Ph2PN)4 (SN)2 2+ . Inorganic Chemistry. 1984;23(13):1946–1952. [Google Scholar]
- 52.Abramovitch RA, Ooi GHC, Sun H-L, Pierrot M, Baldy A, Estienne J. Chemical Communications. 1984:1583. [Google Scholar]
- 53.Estienne J. Structure d'un dérivé de la saccharine: le tribromure de bis(diéthylamino)-1,3 diméthyl-2,4 (trioxo-1,1,3, 2H-benzothiazol-1λ6,3 yl-2)-2 cyclobuténium. La géométrie de l'ion tribromure. Acta Crystallographica, Section C. 1986;42(11):1614–1618. [Google Scholar]
- 54.Wieghardt K, Backes-Dahmann G, Herrmann W, Weiss J. A Binuclear, mixed-valence MoVI/V-complex; the crystal structure of [(C9H21N3)2Mo2 VIO5](Br3)2 . Angewandte Chemie International Edition. 1984;23(11):899–900. [Google Scholar]
- 55.Allwood BL, Moysak PI, Rzepa HS, Williams DJ. Chemical Communications. 1985:1127. [Google Scholar]
- 56.Slebocka-Tilk H, Ball RG, Brown RS. The question of reversible formation of bromonium ions during the course of electrophilic bromination of olefins. 2. The crystal and molecular structure of the bromonium ion of adamantylideneadamantane. Journal of the American Chemical Society. 1985;107(15):4504–4508. [Google Scholar]
- 57.Bruce MI, Humphrey MG, Koutsantonis GA, Nicholson BK. Reactions of transition metal acetylide complexes IV. Synthesis and X-ray structure of a bromovinylidene complex, [Ru{C=CBr(C6 H4Br-4)}(PPh3)2(η− C5H5)][Br3] ⋅ CHCl3 . Journal of Organometallic Chemistry. 1985;296(3):C47–C50. [Google Scholar]
- 58.Cotton FA, Lewis GE, Schwotzer W. Preparation and properties of the tribromide of trans-dibromotetrakis(acetonitrile)vanadium(III), [VBrI2(CH3CN)4]Br3. A symmetric tribromide ion. Inorganic Chemistry. 1986;25(19):3528–3529. [Google Scholar]
- 59.Endres H. Zeitschrift für Naturforschung, Section B. 1986;41:1437. [Google Scholar]
- 60.Boeyens JCA, Denner L, Howard AS, Michael JP. South African Journal of Chemistry. 1986;39:217. [Google Scholar]
- 61.Detty MR, Luss HR. Tellurapyrylium dyes. 3. Oxidative halogen addition and tellurium-halogen exchange. Organometallics. 1986;5(11):2250–2256. [Google Scholar]
- 62.Aragoni MC, Arca M, Devillanova FA, et al. Self-assembly of supramolecular architectures based on polybromide anions: crystal structure of [(H4tppz4+)(Br−)2(Br4 2 −)] [tppz = tetra(2-pyridyl)pyrazine] Inorganic Chemistry Communications. 2005;8(1):79–82. [Google Scholar]
- 63.Vaughan GBM, Mora AJ, Fitch AN, Gates PN, Muir AS. A high resolution powder X-ray diffraction study of the products of reaction of dimethyl sulfide with bromine; crystal and molecular structures of (CH3)2 SBrn(n = 2,2.5 or 4) Journal of the Chemical Society, Dalton Transactions. 1999;(1):79–84. [Google Scholar]
- 64.Vogt H, Wulff-Molder D, Ritschl F, Mücke M, Skrabei U, Meisel M. Tris(dialkylamino)benzylphosphonium bromides - Phosphonium salts with three N atoms configurated nearly planar. Zeitschrift für anorganische und allgemeine Chemie. 1999;625(6):1025–1027. [Google Scholar]
- 65.Zimmerman HE, Wang P. Inter- and intramolecular stereoselective protonation of enols. Journal of Organic Chemistry. 2002;67(26):9216–9226. doi: 10.1021/jo026187p. [DOI] [PubMed] [Google Scholar]
- 66.Bashore CG, Samardjiev IJ, Bordner J, Coe JW. Twisted amide reduction under Wolff-Kishner conditions: synthesis of a benzo-1-aza-adamantane derivative. Journal of the American Chemical Society. 2003;125(11):3268–3272. doi: 10.1021/ja028152c. [DOI] [PubMed] [Google Scholar]
- 67.Nolte J, Neubauer P, Vogt H, Meisel M. Syntheses and crystal structures of tris(di-n-propylamino)-p-bromobenzyl-phosphonium bromides: [(C3H7)2N]3PCH2C6H4Br+Br− and [(C3 H7)2 N]3PCH2C6H4 Br+Br3 − . Zeitschrift für Naturforschung, Section B. 1999;54(1):113–116. [Google Scholar]
- 68.Ruiz J, Riera V, Vivanco M, García-Granda S, Díaz MR. Reactivity of bis(diphenylphosphino)methanide complexes of manganese(I) toward halogens and Pseudohalogens. Organometallics. 1998;17(21):4562–4567. [Google Scholar]
- 69.Cross WI, Godfrey SM, Jackson SL, McAuliffe CA, Pritchard RG. The reaction of the tertiary phosphine sulfides R3PS(R=Ph,Me2 or C6H11) with X2(X2 =I2,Br2, IBr or ICl); structural characterization of the CT complexes (Me2N)3PSI2 and Ph3PS(I0.89Br0.11)Br and the ionic compound [{(Me2N)3PS}2S]2+ 2[Br3]− . Journal of the Chemical Society, Dalton Transactions. 1999;(13):2225–2230. [Google Scholar]
- 70.Rovnaník P, Kapička L, Taraba J, Černík M. Base-induced dismutation of POCl3 and POBr3: synthesis and structure of ligand-stabilized dioxophosphonium cations. Inorganic Chemistry. 2004;43(7):2435–2442. doi: 10.1021/ic0354163. [DOI] [PubMed] [Google Scholar]
- 71.Pickardt J, Schumann H, Mohtachemi R. Structure of decamethylferrocenium tribromide. Acta Crystallographica, Section C. 1990;46(1):39–41. [Google Scholar]
- 72.Coleman AW, Means CM, Bott SG, Atwood JL. Air-stable liquid clathrates. 1. Crystal structure of [NBu4][Br3 ] and reactivity of the [NBu4][Br3] ⋅ 5C6H6 liquid clathrate. Journal of Chemical Crystallography. 1990;20(2):199–201. [Google Scholar]
- 73.Liu J-C, Ishizuka T, Osuka A, Furuta H. Modulation of axial coordination in N-confused porphyrin-antimony(v) dibromide complex by proton stimulus. Chemical Communications. 2003;9(15):1908–1909. doi: 10.1039/b301539b. [DOI] [PubMed] [Google Scholar]
- 74.Bekaert A, Lemoine P, Viossat B, Jouan M, Gemeiner P, Brion JD. Synthesis, crystal structure, IR and Raman properties of 1,2-diacetamidocyclohexane and its complexes with ZnBr2 and HBr3 . Journal of Molecular Structure. 2005;738(1–3):39–44. [Google Scholar]
- 75.Atwood JL, Junk PC, May MT, Robinson KD. Synthesis and X-ray structure of [H3 O+⋅18-crown-6] [Br-Br-Br−]; a compound containing both H3O+ and a linear and symmetrical Br3 − ion crystallized from aromatic solution. Journal of Chemical Crystallography. 1994;24(4):243–245. [Google Scholar]
- 76.Janickis V. Syntheses and crystal structures of phenyltrimethylammonium salts of a mixed Hexabromoselenate/tellurate(IV), [C6H5(CH3)3N]2[Se0.75Te0.25Br6], and a mixed catena-poly[(Di-μ-bromobis{tetrabromoselenate/tellurate(IV)} )-μ-bromine], [C6H5(CH3)3 N]2n . Acta Chemica Scandinavica. 1999;53(3):188–193. [Google Scholar]
- 77.Bekaert A, Barberan O, Kaloun EB, et al. Crystal structure of N-methylpyrrolidone-2-one-N-methylpyrrolidine-2-onium perbromide, C10H19Br3N2O2 . Zeitschrift für Kristallographie: New Crystal Structures. 2001;216(3):457–458. [Google Scholar]
- 78.Hubig SM, Lindeman SV, Kochi JK. Charge-transfer bonding in metal-arene coordination. Coordination Chemistry Reviews. 2000;200–202:831–873. [Google Scholar]
- 79.Lawton SL, Hoh DM, Johnson RC, Knisely AS. Crystal structure of 4-methylpyridinium nonabromoantimonate(V), (4−C6 H7NH)2SbVBr9 . Inorganic Chemistry. 1973;12(2):277–283. [Google Scholar]
- 80.Spandl J, Daniel C, Brüdgam I, Hartl H. Synthesis and structural characterization of redox-active dodecamethoxoheptaoxohexavanadium clusters. Angewandte Chemie International Edition. 2003;42(10):1163–1166. doi: 10.1002/anie.200390306. [DOI] [PubMed] [Google Scholar]
- 81.Le Gall B, Conan F, Cosquer N, et al. Unexpected behaviour of copper(I) towards a tridentate Schiff base: synthesis, structure and properties of new Cu(I)-Cu(II) and Cu(II) complexes. Inorganica Chimica Acta. 2001;324(1-2):300–308. [Google Scholar]
- 82.Vogt H, Quaschning V, Ziemer B, Meisel M. Synthesis and crystal structures of tris(diethylamino)benzylphosphonium bromides: [(C2H5)2 N]3PCH2C6 H5 +Br− ⋅CH3CN and [(C2H5)2 N]3PCH2C6H5 + Br3 − . Zeitschrift für Naturforschung, Section B. 1997;52(10):1175–1180. [Google Scholar]
- 83.Hughes BB, Haltiwanger RC, Pierpont CG, Hampton M, Blackmer GL. Synthesis and structure of a 12-crown-4 sandwich complex of manganese(II), bis(1,4,7,10-tetraoxacyclododecane)manganese(II) tribromide. Inorganic Chemistry. 1980;19(6):1801–1803. [Google Scholar]
- 84.Calleri M, Ferguson G. Crystal Structure Communications. 1972;1:331. [Google Scholar]
- 85.Lawton SL, Jacobson RA. The crystal structure of α-Picoliniunn Nonabrsmoantimonate(V), (C6H7NH)2SbvBr9 . Inorganic Chemistry. 1968;7(10):2124–2134. [Google Scholar]
- 86.Brenčič JV, Chernega AN, Rotar R. Structural identification of rans-[MoIIIBr2py4] Br3(py=pyridine,C5H5N) Acta Chimica Slovenica. 1999;46(2):155–160. [Google Scholar]
- 87.Breneman GL. private communication, 2000.
- 88.Lawton SL, McAfee ER, Benson JE, Jacobson RA. Crystal structure of quinolinium hexabromoantimonate(V) tribromide, (C9H7NH)2SbvBr9 . Inorganic Chemistry. 1973;12(12):2939–2944. [Google Scholar]
- 89.Robertson KN, Bakshi PK, Cameron TS, Knop O. Polyhalide anions in crystals. 3. The Br8 2− anion in diquinuclidinium octabromide, the crystal structures of Me4PBr3 and quinuclidinium tribromide, and Ab initio calculations on polybromide anions. Zeitschrift für anorganische und allgemeine Chemie. 1997;623(1):104–114. [Google Scholar]
- 90.Bock H, Rauschenbach A, Näther C, Kleine M, Bats JW. Einkristall-molekülstrukturen 1071,2: strukturänderungen von thianthren, 2,3,6,7-tetramethoxythianthren und 2,3,6,7-tetramethoxyselenanthren bei komplexbildung mit elektronenakzeptoren sowie bei einelektronenoxidation zu den radikalkationen. Phosphorus, Sulfur and Silicon and Related Elements. 1996;115:51–83. [Google Scholar]
- 91.Hübner J, Wulff-Molder D, Vogt H, Meisel M. Synthesis and crystal structures of (Benzyl)triphenylphosphonium Bromides, [C6 H5−CH 2P(C6H5)3]+Br− and [C6 H5 −CH2 P(C6H5)3]+Br3 − . Zeitschrift für Naturforschung, Section B. 1997;52(11):1321–1324. [Google Scholar]
- 92.Gingl F, Strahle J. Zeitschrift für Naturforschung, Section B. 1989;44:110. [Google Scholar]
- 93.Gubin AI, Buranbaev MZh, Kostynyuk VP, Kopot' OI, Ii'in AI. Crystallography Reports. 1988;33:1393. [Google Scholar]
- 94.Mikhailov VA, Yufit DS, Struchkov YuT. Russian Journal of General Chemistry. 1992;62:399. [Google Scholar]
- 95.Vogt H, Trijanov SI, Rybakov VB. Zeitschrift für Naturforschung, Section B. 1993;48:258. [Google Scholar]
- 96.Hauge S, Marøy K. Syntheses and crystal structures of phenyltrimethylammonium salts of hexabromoselenate(IV), [C6H5(CH3)3N]2[SeBr6], and catena-poly[(Di-μ-bromobis{tetrabromotellurate(IV)})-μ-bromine], [C6 H5(CH3)3 N]2n[Se2Br10 ⋅ Br2]n . Acta Chemica Scandinavica. 1996;50(5):399–404. [Google Scholar]
- 97.Rotar R, Leban I, Brenčič JV. Trans-dichlorotetrakis(pyridine-N)-molybdenum(III) tribromide. Acta Crystallographica, Section C. 1996;52(9):2155–2157. [Google Scholar]
- 98.Bakshi PK, James MA, Cameron TS, Knop O. Polyhalide anions in crystals. Part 1. Triiodides of the Me4N+, Me4P+, quinuclidinium, 1-azoniapropellane, and 1,4-diazoniabicyclo[2.2.2]octane (DabcoH2 2+) cations, and 1,10-phenanthrolinium(1+) tribromide. Canadian Journal of Chemistry. 1996;74(4):559–573. [Google Scholar]
- 99.Field LD, Hambley TW, He T, Humphrey PA, Lindall CM, Masters AF. The syntheses of [M(C5PH5)2]n+ (n = 0,1) complexes of nickel, iron and chromium. The structures of the decaphenylmetallocenium cations of nickel and iron. Australian Journal of Chemistry. 1996;49(8):889–895. [Google Scholar]
- 100.Ollis J, James VJ, Ollis D, Bogaard MP. Crystal Structure Communications. 1976;5:39. [Google Scholar]
- 101.Bogaard MP, Peterson J, Rae AD. Crystal Structure Communications. 1979;8:347. [Google Scholar]
- 102.Vogt H, Wulff-Molder D, Meisel M. Synthesis and crystal structures of (p-bromobenzyl)triphenylphosphonium bromides, [(p-Br-C6H4CH2)P(C6H5)3]+Br−; [(p-Br-C6H4−CH2)P(C6 H5)3]+Br2 − . Zeitschrift für Naturforschung, Section B. 1996;51(10):1443–1448. [Google Scholar]
- 103.Bekaert A, Barberan O, Kaloun EB, et al. Zeitschrift für Kristallographie: New Crystal Structures. 2002;217:507. [Google Scholar]
- 104.Markovskii LN, Pashinnik VE, Tovstenko VI, et al. Russian Journal of Organic Chemistry. 1991;27:1936. [Google Scholar]
- 105.Zürcher S, Petrig J, Gramlich V, et al. Charge-transfer salts of octamethylferrocenyl thioethers with organic acceptors (TCNQ and TCNQF4) and trihalides (Br3 − and I3 − ). Synthesis, structure, and physical properties. Organometallics. 1999;18(18):3679–3689. [Google Scholar]
- 106.Bekaert A, Barberan O, Kaloun EB, et al. Crystal structure of hexakis(N,N-dimethylformamide-O)aluminium(III) tris(tribromide), Al[(CH3)2N(CH)O]6(Br3)3 . Zeitschrift für Kristallographie: New Crystal Structures. 2002;217(1):128–130. [Google Scholar]
- 107.Arnáiz FJ, Miranda MJ, Aguado R, Maháa J, Maestro MA. Uranyl polyhalides. Molecular structure of [UO2(OAsPh3)4] (Br3)2 and [UO2(OPPh3)4] (I3)2 . Polyhedron. 2002;21(27-28):2755–2760. [Google Scholar]
- 108.Kuhn N, Bohnen H, Henkel G. Zeitschrift für Naturforschung, Section B. 1994;49:1473. [Google Scholar]
- 109.Vogt H, Frauendorf C, Fischer A, Jones PG. Zeitschrift für Naturforschung, Section B. 1995;50:223. [Google Scholar]
- 110.Wang Y-Q, Wang Z-M, Liao C-S, Yan C-H. Bis(1,10-phenanthrolin-1-ium) chlorodiiodide(1-) dichloroiodide(1-) Acta Crystallographica, Section C. 1999;55(9):1503–1506. [Google Scholar]
- 111.Shilov GV, Kazheva ON, D'yachenko OA, et al. The synthesis, structure, and stability of N-cetylpyridinium interhalides: an experimental and quantum-chemical study. Zhurnal Fizicheskoj Khimii. 2002;76(8):1436–1444. [Google Scholar]
- 112.Kobayashi H, Kato R, Kobayashi A, et al. The crystal structure of β′-(BEDT-TTF)2ICl2. A modification of the organic superconductor, β-(BEDT−TTF)2I3 . Chemistry Letters. 1986;15(1):89–92. [Google Scholar]
- 113.Laukhina E, Vidal-Gancedo J, Khasanov S, et al. New organic conductor and a novel structural phase transition in the BEDT-TTF trihalide family. Advanced Materials. 2000;12(16):1205–1210. [Google Scholar]
- 114.Laukhina E, Vidal-Gancedo J, Laukhin V, et al. Multistability in a BEDT-TTF based molecular conductor. Journal of the American Chemical Society. 2003;125(13):3948–3953. doi: 10.1021/ja0280123. [DOI] [PubMed] [Google Scholar]
- 115.Archer EM, van Schalkwyk TGD. The crystal structure of benzene iododichloride. Acta Crystallographica. 1953;6(1):88–92. [Google Scholar]
- 116.Carey JV, Chaloner PA, Hitchcock PB, Neugebauer T, Seddon KR. Journal of Chemical Research. 1996;358:2031. [Google Scholar]
- 117.Wang Z-M, Wang Y-Q, Liao C-S, Yan C-H. 1,10-Phenanthrolinium(2+) dichloroiodide(1-) chloride. Acta Crystallographica, Section C. 1999;55(9):1506–1508. [Google Scholar]
- 118.Parlow A, Hartl H. 2,2′-Bichinolinium-dijodtrichlorid. Acta Crystallographica, Section B. 1979;35(8):1930–1933. [Google Scholar]
- 119.Minkwitz R, Berkei M. A new method for preparation and crystal structure of (trifluoromethyl)iodine dichloride. Inorganic Chemistry. 1999;38(22):5041–5044. doi: 10.1021/ic990441n. [DOI] [PubMed] [Google Scholar]
- 120.Kobayashi H, Kato R, Kobayashi A, et al. Chemistry Letters. 1986:89. [Google Scholar]
- 121.Emge TJ, Wang HH, Leung PCW, et al. New cation-anion interaction motifs, electronic band structure, and electrical behavior in β-(ET)2X salts (X= IC12 − and BrIC1−) Journal of the American Chemical Society. 1986;108(4):695–702. [Google Scholar]
- 122.Shibaeva RP, Rozenberg LP, Yagubskii EB, Ignat'ev AA, Kotov AI. Doklady Akademii Nauk SSSR. 1987;292:1405. [Google Scholar]
- 123.Laukhina E, Tkacheva V, Chekhlov A, et al. Polymorphism of a new bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) based molecular conductor; novel transformations in metallic BEDT-TTF layers. Chemistry of Materials. 2004;16(12):2471–2479. [Google Scholar]
- 124.Chekhlov AN. Journal of Structural Chemistry. 2004;45:960. [Google Scholar]
- 125.Nikiforov VA, Karavan VS, Miltsov SA, et al. ARKIVOC. 2003;4:191. [Google Scholar]
- 126.Bozopoulos A, Kavounis CA. Zeitschrift für Kristallographie: New Crystal Structures. 2004;219:501. [Google Scholar]
- 127.Williams JM, Emge TJ, Firestone MA, et al. Molecular Crystals and Liquid Crystals. 1987;148:233. [Google Scholar]
- 128.Shibaeva RP, Rozenberg LP, Simonov MA, Kushch ND, Yagubskii EB. Crystallography Reports. 1988;33:1156. [Google Scholar]
- 129.Bandoli G, Clemente DA, Nicolini M. Crystal and molecular structure of hexadecyltrimethylammonium dichloroiodide, an antiseptic agent. Journal of Chemical Crystallography. 1978;8(6):279–293. [Google Scholar]
- 130.Grebe J, Geiseler G, Harms K, Dehnicke K. Synthesis and crystal structure of PPh4 [PhICl3] . Zeitschrift für Naturforschung, Section B. 1999;54(1):140–143. [Google Scholar]
- 131.Belaj F. Structure and thermal motion of tetrakis(trichlorophosphazeno)phosphonium dichloroiodate(I), [P(NPCl3)4]+[ICl2]−.2[(CCl4)x(CHCl3)1 − x],= 0.67(2) . Acta Crystallographica, Section B. 1995;51(1):65–71. [Google Scholar]
- 132.March FC, Ferguson F. Stereochemistry of some organic derivatives of group Vb elements. Part VIII. Crystal and molecular structure of μ-chloro-bis[hydroxytriphenylarsenic](1+) dichloroiodate(1–) Journal of the Chemical Society, Dalton Transactions. 1975;(14):1381–1384. [Google Scholar]
- 133.Zhdankin VV, Callies JA, Hanson KJ, Bruno J. New alkyliodonium derivatives stabilized by ammonium or phosphonium groups. Tetrahedron Letters. 1999;40(10):1839–1842. [Google Scholar]
- 134.Sosonyuk SE, Bulanov MN, Leshcheva IF, Zyk NV. Russian Chemical Bulletin. 2002:1159. [Google Scholar]
- 135.Visser GJ, Vos A. The length of the I-Cl bond in tetramethylammonium dichloroiodide. Acta Crystallographica. 1964;17(10):1336–1337. [Google Scholar]
- 136.El Essawi M, Tebbe K-F. Studies on polyhalides, XXXIV. Cesium(18-crown-6)dichloroiodate, [Cs(C12H24O6]ICl2ICl2 . Zeitschrift für Naturforschung, Section B. 1998;53(2):263–265. [Google Scholar]
- 137.Grebe J, Weller F, Dehnicke K. Zeitschrift für Kristallographie: New Crystal Structures. 1997;212:37. [Google Scholar]
- 138.Caira MR, de Wet JF. 4,4,5,5-Tetramethyl-2-phenyl-1, 3-dioxolan-2-ylium dichloroiodate(I) Acta Crystallographica, Section B. 1981;37(3):709–711. [Google Scholar]
- 139.Rømming C. Acta Chemica Scandinavica. 1958;12:668. [Google Scholar]
- 140.Lang ES, Burrow RA, Diniz J. β-Pyridinium dichloroiodide. Acta Crystallographica, Section C. 2000;56(4):471–472. doi: 10.1107/S0108270100000317. [DOI] [PubMed] [Google Scholar]
- 141.Chitsaz S, Folkerts H, Grebe J, et al. Crystal structures of a series of compounds with cations of the type [R3PNH2]+, [R3PN(H)SiMe3]+, and [R3PN(SiMe3)2]+ . Zeitschrift für anorganische und allgemeine Chemie. 2000;626(3):775–783. [Google Scholar]
- 142.Hauge S, Marøy K. Syntheses and crystal structures of phenyltrimethylammonium salts of hexachlorotellurate(IV), [C6 H5(CH3)3N] [TeCl6], catena-poly[(Di-μ-chlorobis{tetrachlorotellurate (IV)})-μ-bromine], [C6 H5(CH3l3N] [Te2Cl10 ⋅ Br2]n′ . Acta Chemica Scandinavica. 1996;50(12):1095–1101. [Google Scholar]
- 143.Baenziger NC, Buckles RE, Simpson TD. Complexes of p-anisylethylenes. III. Crystal structure of the dichloroiodate(I) salt of the tetra-p-anisylethylene dication. Journal of the American Chemical Society. 1967;89(14):3405–3408. [Google Scholar]
- 144.Irsen SH, Dronskowski R. Synthesis and X-ray crystal structure determination of thiotrithiazyl iododichloride, S4N3ICl2 . Zeitschrift für Naturforschung, Section B. 2002;57(12):1387–1390. [Google Scholar]
- 145.Schultz AJ, Geiser U, Kini AM, et al. Preparation and characterization of two structural phases of (EPT)2ICl2 . Synthetic Metals. 1988;27(1-2):229–233. [Google Scholar]
- 146.Gubin AI, Ill'in AI, Pugina EG, Kostinyuk VP, Buranbaev MZh. Crystallography Reports. 1990;35:501. [Google Scholar]
- 147.Carmalt CJ, Norman NC, Farrugia LJ. The syntheses and structures of two large iodoantimonate anions. Polyhedron. 1993;12(17):2081–2090. [Google Scholar]
- 148.Boyle PD, Cross WI, Godfrey SM, McAuliffe CA, Pritchard RG, Teat S. The reaction of N-methylbenzothiazole-2-selone with the interhalogens iodine monobromide and iodine monochloride. Journal of the Chemical Society, Dalton Transactions. 1999;(13):2219–2223. [Google Scholar]
- 149.Minkwitz R, Berkei M. Crystal structure of Tetraphenylphosphonium dichloroiodate(I) [PPh4] [ICl2] . Zeitschrift für Naturforschung, Section B. 2001;56(1):39–42. [Google Scholar]
- 150.Protasiewicz JD. Chemical Communications. 1995:1115. [Google Scholar]
- 151.Mishra AK, Olmstead MM, Ellison JJ, Power PP. Detailed structural characterization of the polyvalent iminoiodinanes ArINTs (Ar=C6 H5 or 2,4,6-Me3C6H2; Ts = SO2C6H4-4-Me) and the aryldichloroiodinane 2,4,6-i-Pr3C6H2ICl2 . Inorganic Chemistry. 1995;34(12):3210–3214. [Google Scholar]
- 152.Grebe J, Harms GK, Weller F, Dehnicke K. Reaktionen silylierter Phosphanimine mit Iodmonochlorid und Iodtrichlorid. Die Kristallstrukturen von [Me3SiNPMe3 ⋅ ], [Ph3PNCl ⋅ ICl] und [Me3PN(H)PMe3][ICl2]2 . Zeitschrift für anorganische und allgemeine Chemie. 1995;621(9):1489–1495. [Google Scholar]
- 153.Gabes W, Olie K. Crystal Structure Communications. 1974;3:753. [Google Scholar]
- 154.Boere RT, Cordes AW, Oakley RT, Reed RW. Chemical Communications. 1985:655. [Google Scholar]
- 155.Boeré RT, Cordes AW, Craig SL, Oakley RT, Reed RW. Stereochemistry of oxidation of 1,5,2,4,6,8-dithiatetrazocines. Preparation and crystal structures of [(Me2E)2C2 E2E2 Cl]+X−(X− = PF6 −,Cl6 −) and (Me2N)2 C2N4 S2(O)2[N(CF3 )2]2 . Journal of the American Chemical Society. 1987;109(3):868–874. [Google Scholar]
- 156.Chivers T, Richardson JF, Smith NRM. Reaction of Dimethylcyanamide with sulfur dichloride: X-ray crystal structures of the N,N′ - (Chlorosulfoniumylidene)bis(N1,N1-dimethylchloroformamidine) complexes [(Me2NC(Cl)N)2 SCl]+X−(X−=Cl−,Cl3 −) and the Hydrolysis product [Me2NC(Cl)NH2 ]+Cl− ⋅ H2O . Inorganic Chemistry. 1985;24(15):2453–2458. [Google Scholar]
- 157.Bogaard MP, Peterson J, Rae AD. Tetraphenylarsonium trichloride. Acta Crystallographica, Section B. 1981;37(7):1357–1359. [Google Scholar]
- 158.Taraba J, Zak Z. Diphenyldichlorophosphonium trichloride-chlorine solvate 1:1, [PPh2Cl2]+Cl3 − ⋅ Cl2: an ionic form of diphenyltrichlorophosphorane. Crystal structures. Inorganic Chemistry. 2003;42(11):3591–3594. doi: 10.1021/ic034091n. [DOI] [PubMed] [Google Scholar]
- 159.Gorge A, Patt-Siebel U, Müller U, Dehnicke K. Zeitschrift für Naturforschung, Section B. 1988;43:1633. [Google Scholar]
- 160.Jansen M, Strojek S. Zeitschrift für Naturforschung, Section B. 1995;50:1171. [Google Scholar]
- 161.Bondi A. van der Waals volumes and radii. The Journal of Physical Chemistry. 1964;68(3):441–451. CSD covalent and van der Waals radii (rcov and rVdW) have been used; rcov:rCl = 0.99,rBr = 1.21, rI = 1.40, rS = 1.02, rSe = 1.22, rTe = 1.47 Å; rVdW : rCl = 1.75, rBr = 1.85, rI =1.98, rS = 1.80, rSe = 1.90, rTe = 2.06 Å. [Google Scholar]
- 162.Becker JY, Bernstein J, Dayan M, Shahal L. Chemical Communications. 1992:1048. [Google Scholar]
- 163.Kumar RK, Aravamudan G, Seshasayee M, Sivakumar K, Fun H-K, Goldberg I. Synthesis and structural characterization of two interesting sandwich and double sandwich type mixed-valent tellurium-dithiocarbamate complexes. Polyhedron. 1998;17(10):1659–1666. [Google Scholar]
- 164.Foss O, Henjum J, Maartmann-Moe K, Maroy K. Acta Chemica Scandinavica. 1987;41:77. [Google Scholar]
- 165.Sekar P, Ibers JA. Synthesis and characterization of HN(SPiPR2 )(SePPh2) and [Te{N(SPiPr2)(SePPh2 )}2] Inorganic Chemistry. 2003;42(20):6294–6299. doi: 10.1021/ic030194u. [DOI] [PubMed] [Google Scholar]
- 166.Dodds CA, Kennedy AR, Reglinski J, Spicer MD. Pushing the frontiers of hard and soft scorpionate chemistry. Inorganic Chemistry. 2004;43(2):394–395. doi: 10.1021/ic035167i. [DOI] [PubMed] [Google Scholar]
- 167.Canseco-Melchor G, García-Montaivo V, Toscano RA, Cea-Olivares R. New mixed ligand organotellurium(IV) compounds containing dithiocarbamates and the more flexible imidotetraphenyldithiodiphosphinates. The crystal structures of C8H8 Te(S2CNEt2)[(SPPh2)2 N] ⋅ H2 O,C8 H8Te(S2 CNC5H10 )[(SPPh2)2 N], and C8H8 Te(S2 CNC4 H8 S)[(SPPh2)2 N] . Zeitschrift für anorganische und allgemeine Chemie. 2001;627(10):2391–2396. [Google Scholar]
- 168.Ase K. Acta Chemica Scandinavica. 1969;23:3206. [Google Scholar]
- 169.von Deuten K, Schnabel W, Klar G. Crystal Structure Communications. 1979;8:221. [Google Scholar]
- 170.Müller U, Bubenheim W. Synthese und Kristallstrukturen von (NEt4)2[TeS3], (NEt4)2[Te(S5)(S7)] und (NEt4)4[Te(S5)2][Te(S7)2] Zeitschrift für anorganische und allgemeine Chemie. 1999;625(9):1522–1526. [Google Scholar]
- 171.Rout GC, Seshasayee M, Aravamudan G, Radha K. Molecular structure of thiocyanatotris (2,2′-iminodiethanoldithiocarbamato) tellurium(IV) monohydrate. Journal of Chemical Crystallography. 1984;14(2):193–204. [Google Scholar]
- 172.Rout GC, Seshasayee M, Aravamudan G, Sowrirajan S. Synthesis and structure of trans-bis[2(3H)-benzimidazolethione]bis(thiourea)tellurium(II) chloride, [Te(CH4 N2 S)2(C7 H6N2 S)2]Cl2 . Acta Crystallographica, Section C. 1984;40(6):963–965. [Google Scholar]
- 173.Novosad J, Tornroos KW, Necas M, Slawin AMZ, Woollins JD, Husebye S. Reaction of large-bite ligands with various tellurium compounds. Synthesis and structural characterization of [Te2(μ −Cl)2{(SPPh2)2 N}2], [(4 − MeOC6H4 TeCl3)2{μ −Ph2 P(S)CH2CH2 P(S)Ph2}] and [Te2(μ −Ph2PS2)2] representing novel types of tellurium complexes. Polyhedron. 1999;18(22):2861–2867. [Google Scholar]
- 174.Birdsall DJ, Novosad J, Slawin AMZ, Woollins JD. Synthesis and crystal structures of tellurium complexes containing imidophosphinate ligands. Journal of the Chemical Society, Dalton Transactions. 2000;(4):435–439. [Google Scholar]
- 175.Rout GC, Seshasayee M, Aravamudan G, Sowrirajan S. Synthesis and structure of tetrakis(phenylenethiourea)tellurium(II) chloride dihydrochloride, C28H26N8S4Cl4Te. Polyhedron. 1984;3(8):921–927. [Google Scholar]
- 176.Wieber M, Schmidt E, Burschka C. Dimethyl-tellur-bis(alkylxanthogenate) Zeitschrift für anorganische und allgemeine Chemie. 1985;525(6):127–134. [Google Scholar]
- 177.Rout GC, Seshasayee M, Aravamudan G, Sowrirajan S. Crystal and molecular structure of tetrakis-(phenylenethiourea)tellurium(II) perchlorate hexahydrate, C28H24N8O8S4Cl2Te ⋅ 6H2O. Journal of Chemical Crystallography. 1985;15(4):377–386. [Google Scholar]
- 178.Valle G, Calogero S, Russo U. Crystal Structure Communications. 1980;9:649. [Google Scholar]
- 179.Elder RC, Marcuso T, Boolchand P. The crystal structure of tetrakis(ethylenethiourea)tellurium(II) chloride dihydrate: a novel (+ − + −) square-planar conformer. Inorganic Chemistry. 1977;16(11):2700–2704. [Google Scholar]
- 180.Ault HK, Husebye S. Acta Chemica Scandinavica, Series A. 1978;32:157. [Google Scholar]
- 181.Briand GG, Chivers T, Schatte G. Redox chemistry of tellurium bis(tert-butylamido)cyclodiphosph(V)azane disulfide and diselenide systems: a spectroscopic and structural study. Inorganic Chemistry. 2002;41(7):1958–1965. doi: 10.1021/ic011151l. [DOI] [PubMed] [Google Scholar]
- 182.Chadha RK, Drake JE, McManus NT, Quinlan BA, Sarkar AB. Synthesis and characterization of aryldihalo(dialkyl dithiophosphato)tellurium(IV) and diarylbis(dialkyl dithiophosphato)tellurium(IV). Crystal structures of p − MoC6H4TeBr2[S2P(OMe)2] and Ph2Te[S2P(OMe)2]2 . Organometallics. 1987;6(4):813–819. [Google Scholar]
- 183.Foss O, Maartmann-Moe K, Maroy K. Acta Chemica Scandinavica, Series A. 1986;40:685. [Google Scholar]
- 184.Husebye S, Törnroos KW. trans-Tetrachlorobis(N, N ′;-dimethylimidazolidine-2-thione)tellurium(IV), a thiourea complex of tellurium with asymmetric Te-S bonds. Acta Crystallographica, Section C. 2000;56(10):1242–1244. doi: 10.1107/s0108270100009392. [DOI] [PubMed] [Google Scholar]
- 185.Dakternieks D, di Giacomo R, Gable RW, Hoskins BF. Crystal structures of Ph2Te(S2P(OEt)2)2 and of two modifications of Ph2Te(S2CNEt2)2 . Journal of Organometallic Chemistry. 1988;349(3):305–314. [Google Scholar]
- 186.Newton MG, King RB, Haiduc I, Silvestru A. A unique supramolecular structure of catena-poly[bis(μ-diphenylphosphinodithioato)ditellurium(I) (Te–Te)], [Te2(S2PPh2)2]n, containing Te–Te ⋯ Te–Te ⋯ chains. Inorganic Chemistry. 1993;32(18):3795–3796. [Google Scholar]
- 187.Drake JE, Khasrou LN, Mislankar AG, Ratnani R. Canadian Journal of Chemistry. 1994;72:1328. [Google Scholar]
- 188.Williams DJ, Bevilacqua VLH, Morson PA, Pennington WT, Schimek GL, Kawai NT. Main group metal halide complexes with sterically hindered thioureas. Part XVII. The crystal and molecular structures of two new tellurium chloride complexes with 1,3-dimethyl-2(3H)-imidazolethione. Inorganica Chimica Acta. 2000;308(1-2):129–134. [Google Scholar]
- 189.Necas M, Novosad J, Husebye S. Tellurium complexes with new, large-bite dithio ligands. The crystal structures of cis- and trans- [Te{Ph2P(S)-N-P(S)(OPh)2}2] and [(4-MeOC6H4TeCl3)2{μ−iPr2P(S)-Fc-P(S)iPr2}] Journal of Organometallic Chemistry. 2001;623(1-2):124–130. [Google Scholar]
- 190.Husebye S, Törnroos KW, Zhu H. Cis-trans isomerism in square planar [TeCl2(stu)2] complexes with bulky substituted thiourea (stu) ligands syntheses and structures of four new tellurium(II) complexes. Zeitschrift für anorganische und allgemeine Chemie. 2001;627(8):1921–1927. [Google Scholar]
- 191.Canseco-Melchor G, Garcia-Montalvo V, Toscano RA, Cea-Olivares R. Synthesis and spectroscopic characterization of new mixed ligand organotellurium(IV) compounds employing dithiocarbamates and imidotetraphenyldithiodiphosphinates. Crystal structure of [C4H8Te(S2CNEt2){(SPPh2)2N}], [C4H8Te(S2CNC5H10){(SPPh2)2N}] and [C4H8Te(S2 CNC4 H8 S){(SPPh2)2N}] . Journal of Organometallic Chemistry. 2001;631(1-2):99–104. [Google Scholar]
- 192.Bjornevag S, Husebye S, Maartmann-Moe K. Acta Chemica Scandinavica, Series A. 1982;36:195. [Google Scholar]
- 193.Dakternieks D, di Giacomo R, Gable RW, Hoskins BF. Synthesis, NMR spectroscopic investigation, and crystal structures of 1,3-dihydro-2λ 4-benzotellurole-2,2-diyl bis( diethyldithiocarbamate), C8H8Te[S2CNEt2]2; S,S′- 1, 3-dihydro-2λ 4-benzotellurole-2,2-diyl O,O,O′,O′-tetraethyl bis(dithiophosphate), C8H8 Te[S2P(OEt)2]2; and 1, 3-dihydro-2λ 4-2X4-benzotellurole-2,2-diyl bis( 0-ethyl xanthate), C8H8Te[S2COEt]2 . Journal of the American Chemical Society. 1988;110(20):6753–6761. [Google Scholar]
- 194.Bailey JHE, Drake JE, Sarkar AB, Wong MLY. Preparation and characterization of diphenylbis(N,N-dialkyldithiocarbamato)tellurium (IV) and chlorodiphenyl(N,N-dialkyldithiocarbamato)tellurium(IV). Crystal structures of Ph2 Te[S2 CNMe2]2, Ph2TeCl[S2CNEt2], and Ph2TeCl[S2 CN(i−Pr)2] . Canadian Journal of Chemistry. 1989;67(11):1735–1743. [Google Scholar]
- 195.Husebye S, Maartmann-Moe K, Mikalsen O. Acta Chemica Scandinavica. 1990;44:464. [Google Scholar]
- 196.Bailey JHE, Drake JE, Wong MLY. Preparation and characterization of a series of bromodiphenyl(N,N-dialkyldithiocarbamato)tellurium(IV) compounds where R=Me, Et, i-Pr, Bu, and of chlorodiphenyl(N,N-dibutyldithiocarbamato)tellurium(IV) and diphenylbis(N,N-dibutyldithiocarbamato)tellurium(IV). Crystal structure of Ph2 TeBr[S2CNEt2] and Ph2Te[S2CNBu2]2 . Canadian Journal of Chemistry. 1991;69(12):1948–1956. [Google Scholar]
- 197.Alcock NW, Culver J, Roe SM. Secondary bonding. Part 15. Influence of lone pairs on co-ordination: comparison of diphenyl-tin(IV) and -tellurium(IV) carboxylates and dithiocarbamates. Journal of the Chemical Society, Dalton Transactions. 1992;(9):1477–1484. [Google Scholar]
- 198.Bogason JO, Dakternieks D, Husebye S, Maartmann-Moe K, Zhu H. Phosphorus, Sulfur, and Silicon and the Related Elements. 1992;71:13. [Google Scholar]
- 199.Husebye S, Maartmann-Moe K, Mikalsen O. Acta Chemica Scandinavica. 1990;44:802. [Google Scholar]
- 200.Drake JE, Drake RJ, Silvestru A, Yang J. Tetraorganodichalcogenoimidodiphosphinato derivatives of dimethyltellurium(IV) compounds. Crystal structures of Me2Te[(SPPh2)2 N]2, Me2TeCl[(SPPh2)2N], Me2 Tel[(SPPh2)2 N ], and Me2TeCl[(OPPh2)(SPPh2)N] . Canadian Journal of Chemistry. 1999;77(3):356–366. [Google Scholar]
- 201.Huang S-P, Dhingra S, Kanatzidis MG. Synthesis and properties of the homo- and heteropolychalcogenide [A(Q5)2]2− family (A=Te, Q=S, Se; A=Se, Q=Se). Crystal structures of (Ph4 P)2[Te(S5)2] and β − (Ph4 P)2[Se(Se5)2] . Polyhedron. 1992;11(15):1869–1875. [Google Scholar]
- 202.Bubenheim W, Frenzen G, Müller U. Synthese und Kristallstrukturen von (PPh4)2[Te(S3)] ⋅ 2CH3CN und (PPh4)2[Te(S5)2] Zeitschrift für anorganische und allgemeine Chemie. 1994;620(6):1046–1050. [Google Scholar]
- 203.Fleischer H, Schollmeyer D. Trans-bis(1H-benzimidazole-1-thione−S)tetrachlorotellurium methanol disolvate. Acta Crystallographica, Section E. 2002;58(8):901–903. [Google Scholar]
- 204.Drake JE, Ratnani R, Yang J. Diphenyltellurium(IV) monothiocarbamates. The molecular structures of Ph2Te[SCONEt2]2, Ph2TeCl[SCONEt2], Ph2TeCl[SCONCH2(CH2)2(CH2)], and Ph2TeCl[SCONCH2(CH2)3(CH2)] Inorganica Chimica Acta. 2001;325(1-2):130–140. [Google Scholar]
- 205.Husebye S, Törnroos KW, Zhu H-Z. Chlorotris(N,N ′-dicyclohexylthiourea-S)tellurium(II) chloride, a tellurium complex with a TeClS3 coordination sphere. Acta Crystallographica, Section C. 2001;57(7):854–856. doi: 10.1107/s010827010100659x. [DOI] [PubMed] [Google Scholar]
- 206.Drake JE, Khasrou LN, Mislankar AG, Ratnani R. The X-ray crystal structures of (O,O−2,3−dimethylbutylene and O,O−2−dimethylpropylene dithiophosphato)diphenyltellurium(IV) derivatives, Ph2Te[S2POCMe2CMe2O]2 and 2Ph2Te[S2POCH2 CMe2CH2O]2 ⋅ 2Ph2TeCl2 ⋅ CS2 and those of (O,O−2,3−dimethylbutylene and O,O-2-dimethylpropylene dithiophosphoric acids, HS2 POCMe2CMe2O and HS2POCH2CMe2CH2O. Polyhedron. 2000;19(4):407–412. [Google Scholar]
- 207.Husebye S, Mughannam D, Törnroos KW. Cis-trans isomerism in square planar [TeX2(stu)2] complexes (X=Br⋅,I⋅) with bulky substituted thiourea (stu) ligands. Syntheses and structures of four new tellurium(II) complexes. Phosphorus, Sulfur, and Silicon and the Related Elements. 2003;178(8):1825–1837. [Google Scholar]
- 208.Foss O, Maroy K. Acta Chemica Scandinavica. 1966;20:123. [Google Scholar]
- 209.Hauge S, Vikane O. Acta Chemica Scandinavica, Series A. 1975;29:755. [Google Scholar]
- 210.Foss O, Husebye S, Törnroos KW, Fanwick PE. Synthesis and X-ray crystal structures of six [TeL4][MF6] salts, where L is ethylene- or trimethylene-thiourea, and M is Si, Ge or Sn. Five Te(II) complexes with a novel type of structure linked together by unusual N—H—F hydrogen bonds. Polyhedron. 2004;23(18):3021–3032. [Google Scholar]
- 211.Drake JE, Khasrou LN, Mislankar AG, Ratnani R. Dimethyltellurium(IV) derivatives with mixed 1,1-dithio ligands. Crystal structures of Me2Te[S2CNMe2][S2COEt] and Me2Te[S2CNEt2][S2COMe] Canadian Journal of Chemistry. 1999;77(7):1262–1273. [Google Scholar]
- 212.Drake JE, Drake RJ, Khasrou LN, Mislankar AG, Ratnani R, Yang J. Synthesis, spectroscopic and structural studies of O-methyl and O-isopropyl monothiocarbonate (monoxanthate) derivatives of dimethyl-and diphenyltellurium(IV). Crystal structures of Me2 Te[SCO2(i−Pr)]2, Ph2Te[SCO2(i−Pr)]2, Me2TeCl[SCO2Me], and Me2TeBr[SCO2(i−pr)] Canadian Journal of Chemistry. 1996;74(11):1968–1982. [Google Scholar]
- 213.Drake JE, Yang J. Synthesis and spectroscopic characterization of pyrrolidyl and piperidyl dithioformate derivatives of dimethyltellurium(IV) compounds. Crystal structures of Me2 Te[S2CN(CH2)3CH2]2, Me2 Te[S2CN(CH2)4 CH2]2, Me2 Te{[S2 CN(CH2)3 CH2][S2 CN(CH2)4 CH2]}, Me2 TeCl[S2 CN(CH2)3 CH2], Me2 TeBr[S2 CN(CH2)3CH2], Me2 TeI[S2CN(CH2)3 CH2], Me2 TeCl[S2CN(CH2)4 CH2], and Me2 TeI[S2CN(CH2)4 CH2] . Inorganic Chemistry. 1997;36(9):1890–1903. doi: 10.1021/ic9608455. [DOI] [PubMed] [Google Scholar]
- 214.García-Montalvo V, Zamora-Rosete MK, Gorostieta D, Cea-Olivares R, Toscano RA, Hernández-Ortega S. Organotellurium(IV) derivatives of tetraphenyldichalcogenoimidodiphosphinates - the crystal and molecular structure of [C4 H8TeI{Ph2(Se)PNP(Se)Ph2 }], [C4H8TeI{Ph2 (S)PNP(S)Ph2}], [C4 H8Te{Ph2(S)PNP(S)Ph2 }2], [C8 H8 TeI{Ph2(S)PNP(S)Ph2}], and [O(TeC4 H8)2 {Ph2(O)PNP(O)Ph2}]2[I,I3 ] representing a novel type of ring systems. European Journal of Inorganic Chemistry. 2001;2001(9):2279–2285. [Google Scholar]
- 215.Bailey JHE, Drake JE. Synthesis and characterization of dimethyl- and dimethoxyphenylbis( N,N-dialkyldithiocarbamato)tellurium(IV) and chlorodimethyl- and chlorodimethoxyphenyl-(N,N-dialkyldithiocarbamato)tellurium(IV). Crystal structures of Me2 Te[S2 CNMe2]2 and (p−MeOC6 H4)2 Te[S2 CNMe2]2 . Canadian Journal of Chemistry. 1993;71(1):42–50. [Google Scholar]
- 216.Novosad J, Lindeman SV, Marek J, Woollins JD, Husebye S. Synthesis and structural characterization of [Te{(SePPh2)2 N}2] and [4-MeOPhTe{(SPPh2)2 N}]2 . Heteroatom Chemistry. 1998;9(7):615–621. [Google Scholar]
- 217.Husebye S, George JW. Crystal and molecular structure of trans-tetrabromo- and trans-tetrachlorobis(tetramethylthiourea)tellurium(IV) Inorganic Chemistry. 1969;8(2):313–319. [Google Scholar]
- 218.Ase K, Roti I. Acta Chemica Scandinavica, Series A. 1974;28:104. [Google Scholar]
- 219.Esperas S, George JW, Husebye S, Mikalsen O. Acta Chemica Scandinavica, Series A. 1975;29:141. [Google Scholar]
- 220.Foss O, Kjoge HM, Maroy K. Acta Chemica Scandinavica. 1965;19:2349. [Google Scholar]
- 221.Ase K, Maartmann-Moe K, Solheim JO. Acta Chemica Scandinavica. 1971;25:2467. [Google Scholar]
- 222.Foss O, Maroy K, Husebye S. Acta Chemica Scandinavica. 1965;19:2361. [Google Scholar]
- 223.Ase K, Boyum K, Foss O, Maroy K. Acta Chemica Scandinavica. 1971;25:2457. [Google Scholar]
- 224.Foss O, Lyssandtrae N, Maartmann-Moe K, Tysseland M. Acta Chemica Scandinavica. 1973;27:218. [Google Scholar]
- 225.Fosheim K, Foss O, Scheie A, Solheimsnes S. Acta Chemica Scandinavica. 1965;19:2336. [Google Scholar]
- 226.Foss O, Maartmann-Moe K. Acta Chemica Scandinavica, Series A. 1987;41:310. [Google Scholar]
- 227.Anderson OP. Acta Chemica Scandinavica. 1971;25:3593. [Google Scholar]
- 228.Ase K, Foss O, Roti I. Acta Chemica Scandinavica. 1971;25:3808. [Google Scholar]
- 229.Foust AS. Structures of bis(μ-thiourea-S)-bis[bis(thiourea-S)tellurium(II)] cations. Inorganic Chemistry. 1980;19(4):1050–1055. [Google Scholar]
- 230.Foss O, Hauge S. Acta Chemica Scandinavica. 1965;19:2395. [Google Scholar]
- 231.Beno MA, Sundell R, Williams JM. Croatica Chemica Acta. 1984;57:695. [Google Scholar]
- 232.Kumar V, Aravamudan G, Seshasayee M. Interaction of heterocyclic thioamides with tellurium(II) and tellurium(IV). Syntheses and crystal structures of bis[2-(2-thioxo-1,3- thiazolidin-3-yl)-4,5-dihydro-1,3- thiazolium]hexabromotellurate(IV) and tris(1- methylimidazole-2-(3H)-thione)tellurium(II) bromide. Polyhedron. 1990;9(24):2879–2885. [Google Scholar]
- 233.Asahara M, Tanaka M, Erabi T, Wada M. Bis(2,6-dimethoxyphenyl)telluriium dihalides (Cl, Br or I) and dithiocyanate: crystal structure and temperature-dependent NMR spectra. Journal of the Chemical Society, Dalton Transactions. 2000;(20):3493–3499. [Google Scholar]
- 234.Drutkowski U, Strauch P. Bis(1,2-dithiosquarato)tellurate(II) a new chalcogenochalcogenate. Inorganic Chemistry Communications. 2001;4(7):342–345. [Google Scholar]
- 235.Drake JE, Khasrou LN, Mislankar AG, Ratnani R. Synthesis and characterization of N,N-diethyl, pyrrolidyl, and piperidyl monothiocarbamate derivatives of dimethyltellurium(IV). Crystal structures of Me2 Te[SCONEt2]2, Me2 TeCI[SCONEt2], Me2 TeBr[SCONEt2], and Me2 TeI[SCONEt2] . Inorganic Chemistry. 1994;33(26):6154–6162. [Google Scholar]
- 236.Bailey JHE, Drake JE, Khasrou LN, Yang J. Synthesis and spectroscopic characterization of O-alkyl dithiocarbonate (Xanthate) derivatives of dimethyl- and diphenyltellurium(IV). Crystal structures of Me2 Te[S2COEt]2 and Ph2 Te[S2COEt]2 . Inorganic Chemistry. 1995;34(1):124–133. [Google Scholar]
- 237.Silvestru A, Haiduc I, Breunig HJ, Ebert KH. Diphenyltellurium(IV) bis(diorganophosphinodithioates). X-ray crystal structure of Ph2Te(S2 PPh2)2 ⋅ 0.5CHCl3 and and a multinuclear NMR study of the decomposition process of Ph2 Te(S2PR2)2 to Ph2 TeII and [R2 P(S)S]2 . Polyhedron. 1995;14(9):1175–1183. [Google Scholar]
- 238.Chung D-Y, Huang S-P, Kim K-W, Kanatzidis MG. Discrete complexes incorporating heteropolychalcogenide ligands: ring and cage structures in [Au2(TeS3)2]2− , [Ag2Te(TeS3)2]2 −, and [Ag2 Te(TeSe3 )2]2− . Inorganic Chemistry. 1995;34(17):4292–4293. [Google Scholar]
- 239.Barnard PWC, Donaldson JD, Grimsey RMA, Dennes G, Russo U, Calogero S. A study of square-planar tellurium(II) complexes with thiourea type ligands. Inorganica Chimica Acta. 1981;51:217–223. [Google Scholar]
- 240.Foss O, Maartmann-Moe K. Acta Chemica Scandinavica, Series A. 1986;40:675. [Google Scholar]
- 241.Silvestru A, Haiduc I, Ebert KH, Breunig HJ. Novel coordination pattern of dithiophosphorus ligands. Crystal and molecular structure of (diphenylphosphinodithioato)phenyltellurium(II), PhTeS2PPh2. Supramolecular association through monodentate biconnective dithiophosphorus ligands. Inorganic Chemistry. 1994;33(7):1253–1254. [Google Scholar]
- 242.Silvestru A, Haiduc I, Ebert KH, Breunig HJ, Sowerby DB. New aryltellurium(II) diorganophosphinodithioates. Crystal structure of red (294 K) and yellow (173 K) ∞1[PhTeS(S)PPh2] a supramolecular polymer displaying an unusual coordination pattern of the phosphinodithioato ligand. Journal of Organometallic Chemistry. 1994;482(1-2):253–259. [Google Scholar]
- 243.Fleischer H, Stauf S, Schollmeyer D. Experimental investigations and ab initio studies of tellurium(II) dithiolates, Te(SR)2 . Inorganic Chemistry. 1999;38(16):3725–3729. doi: 10.1021/ic990104e. [DOI] [PubMed] [Google Scholar]
- 244.Fleischer H, Schollmeyer D. Conformation versus coordination: synthesis and structural investigations of tellurium(II) dithiolates derived from β-donor-substituted thiols. Inorganic Chemistry. 2002;41(18):4739–4747. doi: 10.1021/ic020277v. [DOI] [PubMed] [Google Scholar]
- 245.Edelmann FT, Fischer A, Haiduc I. Two structurally differing (heterogeometric) mesityltellurium(II) phosphor-1,1-dithiolates: the first monomeric dicoordinate MesTeS(S)PPh2 and a self-assembled tricoordinate [MesTeS(S)P(OPri)2]x . Inorganic Chemistry Communications. 2003;6(7):958–960. [Google Scholar]
- 246.Fleischer H, Mitzel NW, Schollmeyer D. Tellurium(II) dialkanethiolates: np(S)-σ*(Te−S′) orbital interactions determine the 125 Te NMR chemical shift, and the molecular and crystal structure. European Journal of Inorganic Chemistry. 2003;2003(5):815–821. [Google Scholar]
- 247.Husebye S, Maartmann-Moe K, Mikalsen O. Acta Chemica Scandinavica. 1989;43:868. [Google Scholar]
- 248.Husebye S, Maartmann-Moe K, Mikalsen O. Acta Chemica Scandinavica. 1989;43:754. [Google Scholar]
- 249.Husebye S. Acta Chemica Scandinavica. 1966;20:24. [Google Scholar]
- 250.Refaat LS, Maartmann-Moe K, Husebye S. Acta Chemica Scandinavica, Series A. 1984;38:147. [Google Scholar]
- 251.Allen C, Boeyens JCA, Briggs AG, et al. Reaction of 3,4-dimethyl-1-oxa-6,6aλ 4-diselena-2-azapentalene with tetraphosphorus decasulphide: a new molecular rearrangement. X-Ray crystal structures of 3,4-dimethyl-1-oxa-6,6aλ 4-diselena-2-azapentalene, 2,4-dimethyl-1-thia-6,6aλ 4-diselena-3-azapentalene, and 2,4-dimethyl-1,6-dithia-6aλ 4-selena-3-azapentalene. Journal of the Chemical Society, Chemical Communications. 1987;(13):967–968. [Google Scholar]
- 252.Billing DG, Levendis DC, Reid DH, Rose BG. 3,5-diphenyl-2-(2-pyridylamino)-1-thia-6,6aλ 4-diselenapentalene. Acta Crystallographica, Section C. 1995;51(10):2057–2059. [Google Scholar]
- 253.Fedin VP, Sokolov MN, Geras'ko OA, Virovets AV, Podberezskaya NV, Fedorov VYe. Triangular M3 Se7 and M3Se4 complexes (M = Mo, W). An X-ray study of Mo3 Se7(Et2 NCS2)4 and W3 Se7(Et2NCS2)4 . Inorganica Chimica Acta. 1991;187(1):81–90. [Google Scholar]
- 254.Meinwald J, Dauplaise D, Clardy J. Peri-bridged naphthalenes. 2. Unsymmetrical diatomic chalcogen bridges. Journal of the American Chemical Society. 1977;99(23):7743–7744. [Google Scholar]
- 255.Fedin VP, Sokolov MN, Virovets AV, Podberezskaya NV, Federov VYe. Synthesis and crystal structure of [Mo3(μ − S)(μ−SSe)3(dtc)3]SeCN. An example of formation of unusual polymeric chains by cation and anion chalcogen atoms. Polyhedron. 1992;11(18):2395–2398. [Google Scholar]
- 256.Fedin VP, Mironov YuV, Sokolov MN, Virovets AV, Podberezskaya NV, Federov VE. Russian Journal of Inorganic Chemistry. 1992;37:2205. [Google Scholar]
- 257.Refaat LS, Maartmann-Moe K, Husebye S. Acta Chemica Scandinavica, Series A. 1984;38:303. [Google Scholar]
- 258.Bergholdt AB, Kobayashi K, Horn E, et al. Crystal structures and ab initio calculations of new dicationic telluranes (λ 4-tellane), [10-Te-4(C2 X2)]2+ (X = S, Se): positively charged hypervalent bonding systems. Journal of the American Chemical Society. 1998;120(6):1230–1236. [Google Scholar]
- 259.Husebye S, Maartmann-Moe K. Acta Chemica Scandinavica, Series A. 1983;37:219. [Google Scholar]
- 260.Maaninen A, Chivers T, Parvez M, Pietikäinen J, Laitinen RS. Syntheses of THF solutions of SeX2 (X = Cl, Br) and a new route to selenium sulfides SenS8−n (n = 1−5): X-ray crystal structures of SeCl2(tht)2 and SeCl2 ⋅ tmtu . Inorganic Chemistry. 1999;38(18):4093–4097. [Google Scholar]
- 261.Sowrirajan S, Aravamudan G, Seshasayee M, Rout GC. Synthesis and structure of a square-planar complex of selenium(II), tetrakis [N,N ′-(o-phenylene)thiourea]selenium(II) dichloride dihydrochloride, Se(C7H6 N2S)4 ⋅ 2HCl . Acta Crystallographica, Section C. 1985;41(4):576–579. [Google Scholar]
- 262.Chidambaram Sp, Aravamudan G, Rout GC, Seshasayee M. Crystal structure of tris(o-phenylenethiourea)selenium(II) bromide pentahydrate, C21 H18 N6S3 Br2 Se ⋅ 5H2O . Canadian Journal of Chemistry. 1986;64(3):477–480. [Google Scholar]
- 263.Chidambaram Sp, Aravamudan G, Seshasayee M. Structure of bis[μ−N,N′-(o-phenylene)thiourea-S]-bis{bis[N,N′-(o-phenylene)thiourea-S]selenium(II)} perchlorate hexahydrate. Acta Crystallographica, Section C. 1989;45(7):1015–1018. [Google Scholar]
- 264.Hordvik A, Julshamn K. Acta Chemica Scandinavica. 1971;25:1895. [Google Scholar]
- 265.Llaguno EC, Paul IC. Structure of a 3-aminothiathiophthen : X-ray analysis of 3-amino-2-methylthio-5-phenyl-6a-thiathiophthen {3-amino-2-methylthio-5-phenyl [1,2]dithiolo[1,5-b][1,2]dithiole-7-S IV} Journal of the Chemical Society, Perkin Transactions 2. 1976;(2):228–234. [Google Scholar]
- 266.Hordvik A, Oftedal P. Acta Chemica Scandinavica, Series A. 1981;35:663. [Google Scholar]
- 267.Hansen LK. Acta Chemica Scandinavica, Series A. 1982;36:445. [Google Scholar]
- 268.Reinke H, Kleist M. Private Communication. 1999 [Google Scholar]
- 269.Yokoyama M, Shiraishi T, Hatanaka H, Ogata K. Synthesis and structure determination of [1,2]dithiolo[1,5-b][1,2,4]dithiazole-4-S IV derivatives. Journal of the Chemical Society, Chemical Communications. 1985;(23):1704–1705. [Google Scholar]
- 270.Hordvik A, Saethre LJ. Acta Chemica Scandinavica. 1972;26:3114. [Google Scholar]
- 271.Hordvik A. Acta Chemica Scandinavica. 1971;25:1583. [Google Scholar]
- 272.Birknes B, Hordvik A, Saethre LJ. Acta Chemica Scandinavica, Series A. 1982;36:683. [Google Scholar]
- 273.Birknes B, Hordvik A, Saethre LJ. Acta Chemica Scandinavica, Series A. 1975;29:195. [Google Scholar]
- 274.Johnson PL, Llaguno EC, Paul IC. A symmetrically substituted thiathiophthen with unequal sulphur-sulphur bond lengths: crystal and molecular structure of 3,4-diphenyl-6a-thiathiophthen {3,4-diphenyl[1,2]dithiolo[1,5-b][1,2]dithiole-7-S IV} Journal of the Chemical Society, Perkin Transactions 2. 1976;(2):234–238. [Google Scholar]
- 275.Meienberger MD, Hegetschweiler K, Rüegger H, Gramlich V. The reactivity of complexes containing the [Mo3(μ 3 S)(μS2)3]4+ core. Ligand substitution, sulfur elimination and sulfide binding. Inorganica Chimica Acta. 1993;213(1-2):157–169. [Google Scholar]
- 276.Stelander B, Viehe HG, van Meerssche M, Germain G, Declercq JP. Bulletin des Societes Chimique Belges. 1977;86:291. [Google Scholar]
- 277.Wang Yu, Chen MJ, Wu CH. Deformation density study of 2,4-diphenyl-6a-thiathiophthene. Acta Crystallographica, Section B. 1988;44(2):179–182. [Google Scholar]
- 278.Hordvik A, Sletten E, Sletten J. Acta Chemica Scandinavica. 1969;23:1852. [Google Scholar]
- 279.Wang Yu, Yeh SK, Wu SY, Pai CT, Lee CR, Lin KJ. Deformation-density studies of thiathiophthenes. II. 2,4-diphenyl-6a-thiathiophthene. Acta Crystallographica, Section B. 1991;47(2):298–303. [Google Scholar]
- 280.Hordvik A, Julshamn K. Acta Chemica Scandinavica. 1971;25:1835. [Google Scholar]
- 281.Saethre LJ, Hordvik A. Acta Chemica Scandinavica, Series A. 1975;29:136. [Google Scholar]
- 282.Wang Yu, Wu SY, Cheng AC. Deformation-density studies of thiathiophthenes. I. 2,5-dimethyl-6a-thiathiophthene. Acta Crystallographica, Section B. 1990;46(6):850–854. [Google Scholar]
- 283.Sletten J. Acta Chemica Scandinavica, Series A. 1974;28:499. [Google Scholar]
- 284.Hordvik A, Milje LM. Acta Chemica Scandinavica. 1973;27:510. [Google Scholar]
- 285.Busetti V, Valle G, Piazzesi AM. Crystal Structure Communications. 1978;7:481. [Google Scholar]
- 286.Graubaum H, Tittelbach F, Lutze G, et al. Novel crown ethers with a trithiadiazapentalene-trithiotriuret redox system. Angewandte Chemie International Edition. 1997;36(15):1648–1650. [Google Scholar]
- 287.Hansen LK, Hordvik A. Acta Chemica Scandinavica. 1973;27:411. doi: 10.3891/acta.chem.scand.27-2211. [DOI] [PubMed] [Google Scholar]
- 288.Iwasaki F, Manabe N, Nishiyama H, et al. Crystal and molecular structures of hypervalent thia/selena-pentalenes. Bulletin of the Chemical Society of Japan. 1997;70(6):1267–1275. [Google Scholar]
- 289.Hordvik A. Acta Chemica Scandinavica. 1971;25:1822. [Google Scholar]
- 290.Johnson SM, Newton MG, Paul IC. Crystal and molecular structure of an unsymmetrical 6a-thiathiophthen: single-crystal X-ray analysis of 3-benzoyl-5-p-bromophenyl-2-methylthio-6a-thiathiophthen. Journal of the Chemical Society B. 1969:986–993. [Google Scholar]
- 291.Gloe K, Graubaum H, Wüst M, Rambusch T, Seichter W. Macrocyclic and open-chain ligands with the redox switchable trithiadiazapentalene unit: synthesis, structures and complexation phenomena. Coordination Chemistry Reviews. 2001;222(1):103–126. [Google Scholar]
- 292.Sotiropoulos J-M, Lamazouere A-M, el Batouti N, Sotiropoulos J, Dahan F, Jaud J. Phosphorus, Sulfur and Silicon and the Related Elements. 1990;48:97. [Google Scholar]
- 293.Fabian J, Gloe K, Wüst M, Krüger-Rambusch T, Rademacher O, Graubaum H. The structure of 3,4-diaza-1,6,6aλ 4-trithiapentalenes- a combined experimental and theoretical study. Phosphorus, Sulfur and Silicon and Related Elements. 1998;140:35–52. [Google Scholar]
- 294.Yih K-H, Lin Y-C, Lee G-H, Wang Yu. Synthesis and crystal structure of the first 6a-thiathiophthen metal complex [Mo(CO)5PPh2]2(μ−C5H2S3) Journal of the Chemical Society, Chemical Communications. 1995;(2):223–224. [Google Scholar]
- 295.Meyer B, Wunderlich H. Zeitschrift für Naturforschung, Section B. 1982;37:1437. [Google Scholar]
- 296.Llusar R, Uriel S, Vicent C, et al. Single-component magnetic conductors based on Mo3S7 trinuclear clusters with outer dithiolate ligands. Journal of the American Chemical Society. 2004;126(38):12076–12083. doi: 10.1021/ja0474244. [DOI] [PubMed] [Google Scholar]
- 297.Zeying Z, Youqi T, Chenggang D, Zhuang T. Science in China, Series B. 1985:621. [Google Scholar]
- 298.Coucouvanis D, Hadjikyriacou A. Synthesis and structural characterization of the Et4 N+ salts of the new [[(S2)2 MoO]2S]2− and [[(S2)2 MoO]2S]2 2− oxo-disulfido-molybdate(VI) anions. Inorganic Chemistry. 1987;26(1):1–2. [Google Scholar]
- 299.Hadjikyriacou AI, Coucouvanis D. Synthesis, structural characterization, and properties of the [Mo2 O2S9]2− thio anion and the [Mo4 O4 S18]2− , [Mo2O2 S8(SCH3)]−, and [Mo2 O2 S8Cl]− derivatives. Inorganic Chemistry. 1989;28(11):2169–2177. [Google Scholar]
- 300.Bottcher P, Buchkremer-Hermanns H. Zeitschrift für Naturforschung, Section B. 1987;42:267. [Google Scholar]
- 301.Closs F, Srdanov G, Wudl F. 3-Oxo-4-thioxo-1,2,5,6-tetrathiapentalene (OTTP): a novel thiocarbon with an unusual chalcogen network in its solid state structure. Journal of the Chemical Society, Chemical Communications . 1989;(22):1716–1717. [Google Scholar]
- 302.Yang X, Rauchfuss TB, Wilson S. The chemistry of C6 S10: a channel structure for C6 S10(CS2)0.5 and access to the versatile DMAD ⋅C3 S4 O (DMAD = dimethylacetylenedicarboxylate) Journal of the Chemical Society, Chemical Communications . 1990;(1):34–36. [Google Scholar]
- 303.Simonnet-Jegat C, Jourdan N, Robert F, Bois C, Sécheresse F. Evidence of the W(O)(S2)2 core as an intermediate in the acidification of WS4 2 − . Structural characterization of W(O)(S2)2(bpy) and W(O)(S2)2(phen) . Inorganica Chimica Acta. 1994;216(1-2):201–207. [Google Scholar]
- 304.Clegg W, Mohan N, Müller A, Neumann A, Rittner W, Sheldrick GM. Crystal and molecular structure of [N(CH3)4]2[Mo2O2 S2(S2)2]: a compound with two S2 2 − ligands. Inorganic Chemistry. 1980;19(7):2066–2069. [Google Scholar]
- 305.Shibahara T, Iwai N, Sasaki M, Sakane G. Photochromism of dinuclear molybdenum complexes with disulfur and ethylene-1,2-dithiolate ligands. Chemistry Letters. 1997;26(5):445–446. [Google Scholar]
- 306.Zhu H-P, Chen C-N, Liu Q-T, Chen J-T. A triangular [Mo3 S7]4+ complex: tris-(diethyldithiocarbamato-S,S′)tris(μ 2−η 2-disulfido)(μ 3-sulfido)trimolybdenum(IV)-(3 M o−M o) diethyldithiocarbamate. Acta Crystallographica, Section C. 1998;54(9):1273–1275. [Google Scholar]
- 307.Yu R-M, Lu S-F, Huang X-Y, Wu Q-J, Huang J-Q. A new ionic trimolybdenum cluster compound: Mo3 S7(S2 P(ipro)2)3[S2 P(ipro)2] . Chinese Journal of Structural Chemistry. 1998;17(2):137–141. [Google Scholar]
- 308.Bensch W, Schur M. Crystal structure of bis(tetramethylammonium) trismolybdenumtridecasulfide, [N(CH3)4]2Mo3 S13 . Zeitschrift für Kristallographie: New Crystal Structures. 1997;212(3):303–304. [Google Scholar]
- 309.Lu S, Ke Y, Li J, Zhang Y. Synthesis, structure and characterizations of a molybdenum sulfide complex with inorganic cluster [Mo3 S13]2− and organic amine Me4N + . Crystal Research and Technology. 2002;37(11):1153–1159. [Google Scholar]
- 310.Ellermeier J, Bensch W. Solvothermal syntheses, crystal structures and properties of thiomolybdates with complex transition metal cations. Zeitschrift für Naturforschung, Section B. 2001;56(7):611–619. [Google Scholar]
- 311.Yang Yu, Liu Q, Wu D. The first triangular V3S7 2 + complex. Synthesis and structure of (Et4N)[V3S7(Me2dtc)3]⋅CH3CN. Inorganica Chimica Acta. 1993;208(1):85–89. [Google Scholar]
- 312.Akasaka T, Nakano M, Tamura H, Matsubayashi G-E. Preparation and properties of tin(IV) complexes with the sulfur-rich dithiolate C3S5 and C8H4S8 ligands and their oxidation. Bulletin of the Chemical Society of Japan. 2002;75(12):2621–2628. [Google Scholar]
- 313.Lu S-F, Wu Q-J, Chen H-B, Yu R-M, Huang J-Q. Chinese Journal of Structural Chemistry. 1994;13:389. [Google Scholar]
- 314.Ellermeier J, Bensch W. Solvothermal synthesis, crystal structure and properties of Mn2(tren)3[Mo2OS6]2⋅1.3H2O exhibiting the new polymeric [Mn2(tren)3]n 4 + chain. Transition Metal Chemistry. 2002;27(7):763–768. [Google Scholar]
- 315.Dereu NLM, Zingaro RA, Meyers EA. Crystal Structure Communications. 1981;10:1345. [Google Scholar]
- 316.Bollinger JC, Ibers JA. Reactions of [M(Se4)2]2− anions with TePEt3: 77Se and 125Te spectra of [MTenSe8 − n]2− (M = Zn, Cd, Hg; = 0−4) and preparation and crystal structure of [PPh4]2[Hg(Te2Se2)2] Inorganic Chemistry. 1995;34(7):1859–1867. [Google Scholar]
- 317.Foss O, Maartmann-Moe K. Acta Chemica Scandinavica, Series A. 1987;41:121. [Google Scholar]
- 318.Foss O, Maartmann-Moe K. Acta Chemica Scandinavica, Series A. 1987;41:321. [Google Scholar]
- 319.Sekar P, Ibers JA. Syntheses and characterization of some mixed Te/Se polychalcogenide anions [TemSen]2− . Inorganic Chemistry. 2004;43(17):5436–5441. doi: 10.1021/ic040026h. [DOI] [PubMed] [Google Scholar]
- 320.Hummel H-U, Fischer T, Wolski A. Strukturen neuer SeII und TeII-Komplexe mit 2,2-Dicyanethylen-1,1-dithiolat, 2,2-Dicyanethylen-1,1-thioselenolat und 2,2-Dicyanethylen-1,1-diselenolat. Zeitschrift für anorganische und allgemeine Chemie. 1994;620(8):1483–1488. [Google Scholar]
- 321.Hauge S, Tysseland M. Acta Chemica Scandinavica. 1971;25:3072. [Google Scholar]
- 322.Pathirana HMKK, Zingaro RA, Meyers EA, Reibenspies JH, Dufner DC. Substituted selenourea-tellurium tetrahalide adducts: precursors to selenium-tellurium alloys. Heteroatom Chemistry. 1990;1(5):401–406. [Google Scholar]
- 323.Zagler R, Eisenmann B. Zeitschrift für Naturforschung, Section B. 1991;46:593. [Google Scholar]
- 324.Kanatzidis MG, Huang S-P. Unanticipated redox transformations in gold polyselenides. Isolation and characterization of [Au2 Se2(Se4)2]2− and [Se11]2− . Inorganic Chemistry. 1989;28(26):4667–4669. [Google Scholar]
- 325.Krebs B, Luhrs E, Willmer R, Ahlers F-P. Chloro- und polyselenoselenate(II) darstellung, struktur und eigenschaften von [Ph3(C2 H4OH)P]2[SeCl4] ⋅ MeCN, [Ph4P]2[Se2Cl6] und [Ph4P]2[Se(Se5)2] Zeitschrift für anorganische und allgemeine Chemie. 1991;592(1):17–34. [Google Scholar]
- 326.Cea-Olivares R, Canseco-Melchor G, García-Montalvo V, Hernández-Ortega S, Novosad J. Synthesis of the first neutral spiro selenium(II) complex containing a true square planar Se(Se4) core—preparation and crystal structure of Bis[N-(diphenylphosphanylselenoyl)-P,P-diphenylphosphanylselenoic amidato-Se, Se′]selenium(II) European Journal of Inorganic Chemistry. 1998;1998(10):1573–1576. [Google Scholar]
- 327.Billing DG, Ferg EE, Lai L-L, Levendis DC, Reid DH. Structures of 2,3-diethyl-6,7-dihydro-5H-2aλ 4-selena-2,3,4a,7a-tetraazacyclopent[c d]indene-1(2H),4(3H)-diselone and 1,4-bis(ethylimino)-5,6-dihydro-2,2aλ 4,3-triselena-4a,6a-diazacyclopenta[c d]pentalene. Acta Crystallographica, Section C. 1993;49(5):917–921. [Google Scholar]
- 328.Richter R, Sieler J, Hansen LK, Kohler R, Beyer L, Hoyer E. Acta Chemica Scandinavica. 1991;45:1. [Google Scholar]
- 329.Batchelor RJ, Einstein FWB, Gay ID, Gu J-H, Pinto BM, Zhou X-M. Electron-transfer reaction of a selenium coronand-copper(II) complex. Formation of the stable 1,5,9,13-tetraselenacyclohexadecane dication. Journal of the American Chemical Society. 1990;112(9):3706–3707. [Google Scholar]
- 330.Batchelor RJ, Einstein FWB, Gay ID, Gu J-H, Pinto BM, Zhou X-M. Redox chemistry of the selenium coronand, 1,5,9,13-tetraselenacyclohexadecane, and a mechanistic study of the electron transfer reaction of its Cu(II) complex. Canadian Journal of Chemistry. 2000;78(5):598–613. [Google Scholar]
- 331.Hummel H-U, Fischer E, Fischer T, Gruss D, Franke A, Dietzsch W. Chemische Berichte. 1992;125:1565. [Google Scholar]
- 332.Bhattacharyya P, Slawin AMZ, Woollins JD. Reaction of [{PhP(Se)(μ−Se)}2] with dialkyl cyanamides: X-ray crystal structures of the phosphorus-containing triselenapentalenes [Me2N-C(Se)=N]2P(Se)Ph and [O(CH2CH2)2N-C(Se)=N]2P(Se)Ph. Angewandte Chemie International Edition. 2000;39(11):1973–1975. doi: 10.1002/1521-3773(20000602)39:11<1973::aid-anie1973>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
- 333.Nakahodo T, Takahashi O, Horn E, Furukawa N. First molecular and electronic structure determination of the dicationic salt of 1,11-(methanoselenomethano)-5H,7H-dibenzo[b,g] [1.5]diselenocin by X-ray crystallographic analysis and ab initio calculation. Chemical Communications. 1997;(18):1767–1768. [Google Scholar]
- 334.Evans WJ, Rabe GW, Ansari MA, Ziller JW. Polynuclear lanthanide complexes: formation of a selenium-centered Sm6 complex, [{(C5Me5)Sm}6Se11] Angewandte Chemie International Edition. 1994;33(20):2110–2111. [Google Scholar]
- 335.Almond MJ, Drew MGB, Redman H, Rice DA. A new simple synthetic route to M3Se7 (M = Mo or W) core containing complexes: crystal structure and characterisation of [M3(μ 3−Se)(μ−Se2)3(dtc)3]2Se. Polyhedron. 2000;19(20-21):2127–2133. [Google Scholar]
- 336.Kornienko AY, Emge TJ, Brennan JG. Chalcogen-rich lanthanide clusters: cluster reactivity and the influence of ancillary ligands on structure. Journal of the American Chemical Society. 2001;123(48):11933–11939. doi: 10.1021/ja011487u. [DOI] [PubMed] [Google Scholar]
- 337.Hauge S, Opedal D, Arskog J. Acta Chemica Scandinavica, Series A. 1975;29:225. [Google Scholar]
- 338.Hordvik A, Julshamn K. Acta Chemica Scandinavica. 1971;25:2507. [Google Scholar]
- 339.Hauge S. Acta Chemica Scandinavica, Series A. 1979;33:3171. [Google Scholar]
- 340.Dietz J, Müller U, Müller V, Dehnicke K. Zeitschrift für Naturforschung, Section B. 1991;46:1293. [Google Scholar]
- 341.Hordvik A, Porten JA. Acta Chemica Scandinavica. 1973;27:485. [Google Scholar]
- 342.Adamo C, Demartin F, Deplano P, et al. Electrochemical synthesis of tetrakis[N-methylbenzothiazole-2(3H)-selone]selenium(2 +) tetrafluoroborate: an uncommon dication containing the mixed-valence Se5 framework. Chemical Communications. 1996;(7):873–874. [Google Scholar]
- 343.Hillier AC, Liu S-Y, Sella A, Elsegood MRJ. (PhTe)3 −: the anionic tellurium analogue of I3 − . Angewandte Chemie International Edition. 1999;38(18):2745–2747. [PubMed] [Google Scholar]
- 344.Dhingra SS, Haushalter RC. A novel ternary zintl anion: synthesis and structural characterization of the [Cu4 SbTe12]3− anion. Journal of the American Chemical Society. 1994;116(8):3651–3652. [Google Scholar]
- 345.Warren CJ, Haushalter RC, Bocarsly AB. Electrochemical synthesis and structural characterization of the one-dimensional chain compound (Et4 N)2[As2Te5] and the tellurido arsenate (Me4N)4[As4Te6] ⋅ 2en. Chemistry of Materials. 1994;6(6):780–783. [Google Scholar]
- 346.Schreiner B, Dehnicke K, Maczek K, Fenske D. [K(15-Krone-5)2]2Te8—ein bicyclisches polytellurid. Zeitschrift für anorganische und allgemeine Chemie. 1993;619(8):1414–1418. [Google Scholar]
- 347.Dhingra SS, Haushalter RC. Synthesis and structure of the new gold polytelluride anion [Au2Te12]4− . Inorganic Chemistry. 1994;33(13):2735–2737. [Google Scholar]
- 348.Jin G-X, Arikawa Y, Tatsumi K. Spontaneous formation of a diamond-crown structure of Re8 polyselenide and a cage structure of Re3 polytelluride [2] Journal of the American Chemical Society. 2001;123(4):735–736. doi: 10.1021/ja003007p. [DOI] [PubMed] [Google Scholar]
- 349.Chen X, Huang X, Li J. Rb4Hg5(Te2)2(Te3)2Te3,[Zn(en)3]4In16(Te2)4(Te3)Te22, and K2Cu2(Te2)(Te3): novel metal polytellurides with unusual metal-tellurium coordination. Inorganic Chemistry. 2001;40(6):1341–1346. doi: 10.1021/ic000648c. [DOI] [PubMed] [Google Scholar]
- 350.McConnachie JM, Ansari MA, Bollinger JC, Salm RJ, Ibers JA. Synthesis and structural characterization of the telluroargentate [PPh4]2[NEt4][AgTe7] and telluromercurate [PPh4]2[HgTe7] compounds containing the unprecedented η 3 − Te7 4− polytelluride anion. Inorganic Chemistry. 1993;32(15):3201–3202. [Google Scholar]
- 351.Smith DM, Roof LC, Ansari MA, et al. Synthesis, reactivity, and structural characterization of the nonclassical [MTe7]n− anions (M = Ag,Au,n = 3;M = Hg,n = 2 ) Inorganic Chemistry. 1996;35(17):4999–5006. doi: 10.1021/ic951668v. [DOI] [PubMed] [Google Scholar]
- 352.Ansari MA, Bollinger JC, Ibers JA. Synthesis and structural characterization of the [AuTe7]3− anion: a planar species with an unprecedented coordination mode. Journal of the American Chemical Society. 1993;115(9):3838–3839. [Google Scholar]
- 353.Sekar P, Arnold FP, Jr, Ibers JA. Synthesis, structure, and theoretical study of the nonclassical [CuTe7]3− anion. Inorganic Chemistry. 2002;41(3):577–581. doi: 10.1021/ic011092b. [DOI] [PubMed] [Google Scholar]
- 354.Freedman D, Emge TJ, Brennan JG. Chalcogen-rich lanthanide clusters: compounds with Te2−,(TeTe)2−,TePh,TeTePh,(TeTeTe(Ph)TeTe)5−, and [(TeTe)4TePh]9− ligands; single source precursors to solid-state lanthanide tellurides. Inorganic Chemistry. 2002;41(3):492–500. doi: 10.1021/ic010981w. [DOI] [PubMed] [Google Scholar]
- 355.Klinkhammer KW, Bottcher P. Zeitschrift für Naturforschung, Section B. 1990;45:141. [Google Scholar]
- 356.Witthaut D, Kirschbaum K, Conrad O, Giolando DM. Isolation of a catenated organotelluride anion in the sodium borohydride reduction of diphenylditelluride. Organometallics. 2000;19(24):5238–5240. [Google Scholar]
- 357.Fujihara H, Nakahodo T, Furukawa N. Preparation and crystal structure of a new tetracoordinated cyclic selenurane with two unsymmetrical apical ligands of oxygen and selenium: transannular hypercoordination between oxy- and diseleno-groups. Chemical Communications. 1996;(3):311–312. [Google Scholar]
- 358.Fujihara H, Nakahodo T, Furukawa N. Synthesis of 5H,7H-dibenzo[b,g][1,5]selenoxocine from a selenonium salt of 5H,7H-dibenzo[b,g][1,5]diselenocine and first X-ray evidence for the transannular oxygen-selenium interaction. Tetrahedron Letters. 1995;36(35):6275–6278. [Google Scholar]
- 359.Sheldrick WS. Polychalcogenides. In: Devillanova FA, editor. Handbook of Chalcogen Chemistry. Cambridge, UK: Royal Society of Chemistry; 2006. pp. 553–584. chapter 9.2. [Google Scholar]
- 360.Beck J, Hormel A, Koch M. 1,2-Dichalcogenolylium ions (C3Cl3 E3)+ from equilibria involving dichalcogen dichlorides E2 Cl2(E= S,Se,Te) . European Journal of Inorganic Chemistry. 2002;(9):2271–2275. [Google Scholar]
- 361.Liaw W-F, Lai C-H, Chiou S-J, et al. Synthesis and characterization of polymeric Ag(I)-telluroether and Cu(I)-diorganyl ditelluride complexes: crystal structures of [Ag(MeTe(CH2 )3TeMe)2]n[BF4]n,[(μ 2− MeTeTeMe)Cu(μ − Cl)]n, and [Ag2(NCCH3)4(μ 2 −(p − C6H4 F)TeTe(p − C6 H4F))2][BF4]2 . Inorganic Chemistry. 1995;34(14):3755–3759. [Google Scholar]
- 362.Eveland JR, Whitmire KH. Synthesis and characterization of the novel iron carbonyl tellurium chloride cluster [Fe2 (CO)6(μ- Cl)(μ- TeCl)2]2[η 2,μ 2,μ 2 - Te2 Cl10], and its decomposition to the zintl ion complex [Fe2 (CO)6(η 2,μ 2,μ 2 -Te4)(μ−TeCl2)] . Angewandte Chemie International Edition. 1996;35(7):741–743. [Google Scholar]
- 363.Hauge S, Vikane O. Acta Chemica Scandinavica, Series A. 1985;39:553. [Google Scholar]
- 364.Foss O, Hermansen R, Maroy K, Moberg T. Acta Chemica Scandinavica, Series A. 1987;41:130. [Google Scholar]
- 365.Hauge S, Vikane O. Acta Chemica Scandinavica, Series A. 1988;42:87. [Google Scholar]
- 366.Husebye S, Thowsen AG. Acta Chemica Scandinavica, Series A. 1981;35:443. [Google Scholar]
- 367.Foss O, Husebye S. Acta Chemica Scandinavica. 1966;20:132. [Google Scholar]
- 368.von Deuten K, Schnabel W, Klar G. Crystal Structure Communications. 1979;8:679. [Google Scholar]
- 369.Appa Rao GVN, Seshasayee M, Aravamudan G, Radha K. Crystal and molecular structure of chlorotris[bis(2-hydroxyethyl)dithiocarbamato]tellurium(IV) dihydrate. Inorganic Chemistry. 1983;22(18):2590–2593. [Google Scholar]
- 370.Vikane O. Acta Chemica Scandinavica, Series A. 1975;29:763. [Google Scholar]
- 371.von Deuten K, Schnabel W, Klar G. Phosphorus and Sulfur. 1980;9:93. [Google Scholar]
- 372.Drake JE, Khasrou LN, Mislankar AG, Ratnani R. Synthesis, spectroscopic studies, and structural studies of O,O-alkylene dithiophosphate and N,N-dimethyl and diethyl dithiocarbamate derivatives of halodimethyltellurium(IV) Inorganic Chemistry. 1999;38(18):3994–4004. [Google Scholar]
- 373.Eide J, Foss O, Maartmann-Moe K, Maberg O, Scheie A. Acta Chemica Scandinavica, Series A. 1987;41:67. [Google Scholar]
- 374.Bergman J, Laitalainen T, Sundberg MR, Uggla R, Kivekäs R. Stereospecific synthesis and crystal structure of the racemate of 1-thia-2-tellura-1(1-allyl-4-chloro)cyclopentane 2,2,2-trichloride. Polyhedron. 1998;17(13-14):2153–2159. [Google Scholar]
- 375.Cox MJ, Tiekink ERT. Crystal structure of chlorotris(dimethyldithiocarbamato)tellurium(IV), [Te(S2CNMe2)3 Cl] . Zeitschrift für Kristallographie: New Crystal Structures. 1999;214(1):49–50. [Google Scholar]
- 376.Sundberg MR, Laitalainen T, Bergman J, Uggla R, Matikainen J, Kaltia S. Plasticity of Cl-Te-Cl fragments. Synthesis, single-crystal X-ray, and NBO study of (1-thia-2-tellura-1-phenyl-4-chloro)cyclopentane 2,2,2-trichloride. Inorganic Chemistry. 1998;37(11):2786–2791. doi: 10.1021/ic970406l. [DOI] [PubMed] [Google Scholar]
- 377.Foss O, Johnsen K, Maartmann-Moe K, Maroy K. Acta Chemica Scandinavica. 1966;20:113. [Google Scholar]
- 378.Drake JE, Drake RJ, Khasrou LN, Ratnani R. Synthesis and spectroscopic characterization of halodimethyl(O-alkyl dithiocarbonato)tellurium(IV) compounds. Crystal structures of Me2TeCl[S2COEt] and Me2 TeI[S2CO(i−Pr)] . Inorganic Chemistry. 1996;35(10):2831–2840. [Google Scholar]
- 379.Fredin KS, Maroy K, Slogvik S. Acta Chemica Scandinavica, Series A. 1975;29:212. [Google Scholar]
- 380.Alvarado-Rodríguez JG, García Gutiérrez MC, Cea-Olivares R. Aspectos geométricos de fenocalcogenotelurinas. Estudio de la estructura molecular y cristalina de O(C6 H4)2Te(Cl)S2 CN(CH2 CH)2 . Revista Mexicana de Fisica. 2000;46(5) supplement 2:44–47. [Google Scholar]
- 381.Carmalt CJ, Norman NC, Farrugia LJ. Octahedral coordination complexes of tellurium tetrachloride. Polyhedron. 1995;14(11):1405–1413. [Google Scholar]
- 382.Haas A, Kasprowski J, Angermund K, et al. Synthese, Strukturen und Eigenschaften der Cyclothiaselenazenium-Kationen [Se2 N2S]2 2 +, [XSe2N2S]+, [Se2N2S]2+ , [S3SeN5]+ sowie Cl2Se2N2S und SeSN2 . TiCl4 . Chemische Berichte. 1991;124(9):1895–1906. [Google Scholar]
- 383.Hu J, Zhuang H-H, Liu S-X, Huang J-L. Syntheses and structures of chalcogen-molybdenum clusters; [Mo3XSe6{S2P(OEt)2}3]Cl, [Mo3X(SeS)3{S2 P(OEt)2}3]I and [Mo3 XSe3{ S2P(OEt)2}4(py)](X= 0.65S + 0.35Se,py= C5H5 N) . Transition Metal Chemistry. 1998;23(5):547–552. [Google Scholar]
- 384.Villa AC, Nardelli M, Tani MEV. The crystal and molecular structure of α,α′-diselenobisformamidinium dichloride. Acta Crystallographica, Section B. 1970;26(10):1504–1510. [Google Scholar]
- 385.Acampora LA, Elman BS, Sandman DJ, et al. Structural and magnetic studies of electrochemically crystallized halides of 1,4,5,8-tetraselenonaphthalene (TSeN) Inorganic Chemistry. 1989;28(8):1579–1582. [Google Scholar]
- 386.Eriksen K, Hauge S, Marøy K. Syntheses and crystal structures of di-μ-chloro-bis [dithiocyanatoselenate(II)] and di-μ-bromo-bis [dithiocyanatoselenate(II)] salts. Phosphorus, Sulfur and Silicon and Related Elements. 2001;174:209–221. [Google Scholar]
- 387.Apblett A, Chivers T, Fait JF. A simple synthesis of [NS]+[AlCl4 ]− and the insertion reaction with alkylselenium halides: X-ray structure of [N2S2 SeCl]+[AlCl4]− . Chemical Communications. 1989;(21):1596–1598. [Google Scholar]
- 388.Apblett A, Chivers T, Fait JF. Preparation of thiazyl tetrachloroaluminate and trifluoromethanesulfonate and reactions of the thiazyl cation with thiadiazoles and organoselenium halides: X-ray crystal structure of [N2 S2 SeCl][AlCl4] . Inorganic Chemistry. 1990;29(9):1643–1648. [Google Scholar]
- 389.Barclay TM, Cordes AW, Goddard JD, et al. Benzo-bridged bis(1,2,3-dithiazoles) and their selenium analogues. Preparation, molecular and electronic structures, and redox chemistry. Journal of the American Chemical Society. 1997;119(50):12136–12141. [Google Scholar]
- 390.Shang M-Y, Huang J-L, Lu J-X. The structure of μ 3-thio-μ 3-tris(disulfido)-chlorato-cyclo-tris[(diethyl dioxodithiophosphato-S,S′)molybdenum](3 M o − M o), C12 H30 ClMo3 O6P3 S13 . Acta Crystallographica, Section C. 1984;40(5):759–761. [Google Scholar]
- 391.Dingming W, Jianquan H, Yuhui L, Jinling H. Acta Physico-Chimica Sinica. 1986;2:533. [Google Scholar]
- 392.Klingelhöfer P, Müller U, Friebel C, Pebler J. Thiochloroanionen von Molybdän(IV). Die Kristallstruktur von (NEt4)3[Mo3(μ 3−S)(μ−S2 )3Cl6] Cl ⋅ CH2 Cl2 Kristallstruktur, EPR-Spektrum und magnetische Eigenschaften von (NEt4)2) [Mo2(μ−S2 )(μ−Cl)2 Cl6] . Zeitschrift für anorganische und allgemeine Chemie. 1986;543(12):22–34. [Google Scholar]
- 393.Zalkin A, Hopkins TE, Templeton DH. The crystal structure of chlorothiodiazyl chloride, S3 N2Cl2 . Inorganic Chemistry. 1966;5(10):1767–1770. [Google Scholar]
- 394.Rabe S, Müller U. Crystal structure of 4,5-dichloro-1,2,3-dithiazolium chloride, [C2 NS2Cl2]Cl. Zeitschrift für Kristallographie: New Crystal Structures. 1999;214(1):68. [Google Scholar]
- 395.Rees CW, Sivadasan S, White AJP, Williams DJ. Conversion of tetrazoles into hydrazonoyl chlorides. Novel donor-dithiazolium interactions. Journal of the Chemical Society, Perkin Transactions 1. 2002;(13):1535–1542. [Google Scholar]
- 396.Britten JF, Cordes AW, Haddon RC, et al. A 1,2,3,5-dithiadiazolyl dimeric radical cation. Preparation and solid state characterization of 1,3-[(S2 N2C)C6H4(CN2S2)]2[Cl]3 . CrystEngComm. 2002;4:205–207. [Google Scholar]
- 397.Fedin VP, Sokolov MN, Myakishev KG, Geras'ko OA, Fedorov VYe, Macicek J. Mechanochemical synthesis of soluble complexes containing M3 S7 4 + and M3 Se7 4 + fragments from polymeric M3 Y7Br4(M = Mo,W;Y = S,Se). The crystal structure of (PPN)2 W3S7Cl6 . Polyhedron. 1991;10(12):1311–1317. [Google Scholar]
- 398.Sokolov MN, Gushchin AL, Naumov DYu, Gerasko OA, Fedin VP. Cluster oxalate complexes [M3(μ 3 − Q)(μ 2 − Q2)3(C2 O4)3]2− and [Mo3(μ 3− Q)(μ 2− Q)3(C2 O4)3(H2 O)3]2−(M=Mo,W;Q= S,Se): echanochemical synthesis and crystal structure. Inorganic Chemistry. 2005;44(7):2431–2436. doi: 10.1021/ic0488637. [DOI] [PubMed] [Google Scholar]
- 399.Borgs G, Keck H, Kuchen W, Mootz D, Wiskemann R, Wunderlich H. Zeitschrift für Naturforschung, Section B. 1991;46:1525. [Google Scholar]
- 400.Grundtvig F, Hordvik A. Acta Chemica Scandinavica. 1971;25:1567. [Google Scholar]
- 401.Zhu H-P, Liu Q-T, Chen C-N, Deng Y-H. Synthesis and structure of a [Mo3 S7]3.5+ complex [Mo3(μ 3 − S)(μ 2 −S2)3(Et2 dtc)3]2 Cl . Jiegou Huaxue. 1998;17(2):142–146. [Google Scholar]
- 402.Barclay TM, Beer L, Cordes AW, et al. Sterically protected 1,2,3-dithiazolyl radicals: preparation and structural characterization of 4-chloro-5-pentafluorophenyl-1,2,3-dithiazlyl. Chemical Communications. 1999;(6):531–532. [Google Scholar]
- 403.Xian-Ti L, Jia-Xi L, Jin-Ling H, Jian-Quan H. Chinese Journal of Structural Chemistry. 1990;9:236. [Google Scholar]
- 404.Ruangsuttinarupap S, Gross H-D, Willing W, Müller U, Dehnicke K. 4-Methyl-1,2,3,5-dithiadiazoliumsalze Die Kristallstrukturen von (CH3 CN2S2 )5[CoCl4 ]Cl3 und (CH3 CN2S2)Cl . Zeitschrift für anorganische und allgemeine Chemie. 1986;536(5):153–163. [Google Scholar]
- 405.Virovets AV, Laege M, Krebs B, et al. Nonvalent interactions in the crystal structures of (Et4N)2[Mo3S7Br6] and (Et4 N)(H9O4)[Mo3 S7Cl6] clusters. Journal of Structural Chemistry. 1996;37(4):666–673. [Google Scholar]
- 406.Geras'ko OA, Virovets AV, Dybtsev DN, Clegg W, Fedin VP. Crystal structure of a supramolecular cluster adduct with cucurbituril, (H3 O)4[W3 S7Cl6]2(C36N24 O12 H36) ⋅ 8 H2O . Koordinatsionnaya Khimiya. 2000;26(7):512–515. [Google Scholar]
- 407.Virovets AV, Volkov OV. Specific nonbonding contacts in the crystal structure of a solid solution [Mo3 (μ 3 −S)(μ− S2)3 (S2 CNEt2)3 ]Cl0.53Br0.47 . Journal of Structural Chemistry. 2000;41(4):713–716. [Google Scholar]
- 408.Virovets AV, Slovokhotov YuL, Struchkov YuT, et al. Russian Journal of Coordination Chemistry. 1990;16:332. [Google Scholar]
- 409.Sellmann D, Hannakam M, Knoch F, Moll M. Transition metal complexes with sulfur ligands—part XCIII. Synthesis, structure and reactivity of [MoIV(μ−S) (`bu S4, )]2 (`buS4,2 − = 1.2-bis(di(t-butyl)-2-mercaptophenylthio)ethane(2 −)) Inorganica Chimica Acta. 1993;205(1):105–112. [Google Scholar]
- 410.Beer L, Cordes AW, Haddon RC, et al. A π-stacked 1,2,3-dithiazolyl radical. Preparation and solid state characterization of (Cl2 C3NS)(ClC2 NS2) . Chemical Communications. 2002;8(17):1872–1873. doi: 10.1039/b204855h. [DOI] [PubMed] [Google Scholar]
- 411.Pathirana HMKK, Reibenspies JH, Meyers EA, Zingaro RA. Structure of di-μ-bromo-(tetrabromo-1k 4Br)bis(N,N-dimethylselenourea-2k 2Se)ditellurium(II,IV)-acetonitrile-methanol (2/3/1) Acta Crystallographica, Section C. 1991;47(3):516–519. [Google Scholar]
- 412.Rudd MD, Lindeman SV, Husebye S. Structural characteristics of three-coordinate arylhalide tellurium(II) complexes with chalcogen ligands. Synthesis, spectroscopic characterization and X-ray structural studies of bromo[N-methylbenzothiazole-2(3H)-selone]phenyltellurium(II), Bromophenyl[tris(dimethylamino)phosphaneselenide]-tellurium(II) and tris(dimethylamino)phosphanesulfide. Acta Chemica Scandinavica. 1996;50(9):759–774. [Google Scholar]
- 413.Schnabel W, von Deuten K, Klar G. Crystal Structure Communications. 1981;10:1405. [Google Scholar]
- 414.Herland P, Lundeland M, Maroy K. Acta Chemica Scandinavica, Series A. 1976;30:719. [Google Scholar]
- 415.Husebye S. Acta Chemica Scandinavica, Series A. 1979;33:485. [Google Scholar]
- 416.Vikane O. Acta Chemica Scandinavica, Series A. 1975;29:738. [Google Scholar]
- 417.Foss O, Maroy K. Acta Chemica Scandinavica, Series A. 1986;40:669. [Google Scholar]
- 418.Rudd MD, Lindeman SV, Husebye S. Tautomeric conversion of a thiourea ligand upon formation of a hypervalent tellurium (II) complex. Synthesis, and X-ray structural studies of N-Phenyl-N′-(1,3-thiazol-2-yl)-thiourea and bromophenyl [1-phenyl-3-(1′,3′-thiazol-3′-ium-2′-yl)-isothioureidato]tellurium(II) Phosphorus, Sulfur and Silicon and Related Elements. 1997;123:313–327. [Google Scholar]
- 419.Hauge S, Maroy K. Acta Chemica Scandinavica. 1992;46:1166. [Google Scholar]
- 420.Horn E, Nakahodo T, Furukawa N. Crystal structure of 1,6-dibromo-2-phenyl-1,2-diselenaacenaphthylene, BrSe(C10 H5Br)Se(C6 H5) . Zeitschrift für Kristallographie: New Crystal Structures. 2000;215(1):23–24. [Google Scholar]
- 421.Larsen S, Henriksen L. Acta Chemica Scandinavica, Series A. 1984;38:289. [Google Scholar]
- 422.Fedin VP, Sokolov MN, Geras'ko OA, Virovets AV, Podberezskaya NV, Fedorov VYe. Synthesis and structure of a new selenium-bridged tungsten cluster, [W3 Se7(S2P( OEt)2)3]Br . Polyhedron. 1992;11(24):3159–3164. [Google Scholar]
- 423.Kienitz CO, Thöne C, Jones PG. The coordination chemistry of 2,2′-dipyridyldiselenide (PySeSePy)—part 2. Complexes with manganese, copper and zinc. Zeitschrift für Naturforschung, Section B. 2000;55(7):587–596. [Google Scholar]
- 424.Pathirana HMKK, Reibenspies JH, Meyers EA, Zingaro RA. Structure of N 1,N 1 ,N 3,N 3-tetramethyl-α, α 1 -diselenobisformamidinium bromide. Acta Crystallographica, Section C. 1991;47(4):903–904. [Google Scholar]
- 425.Béreau V, Ibers JA. Synthesis and characterization by diffraction and 31P- and 77Se-NMR spectroscopy of [Mo3 (μ 3 −Se)(μ 2−Se2)3{N(SePPh2)2}3]Br and [Mo3(μ 3−Se)(μ 2−Se2)3{Se2 P(OCH2CH3)2 }3]Br. Comptes Rendus de l'Academie des Sciences, Series IIC. 2000;3(2):123–129. [Google Scholar]
- 426.Hobert SE, Noll BC, DuBois MR. Synthesis of a rhenium(V) polysulfide complex and a study of its reactivity with hydrogen. Organometallics. 2001;20(7):1370–1375. [Google Scholar]
- 427.Fedin VP, Müller A, Filipek K, et al. Extrusion of molecular clusters from solid-state materials: synthesis by application of γ-irradiation. Molecular and crystal structure of (H9 O4)(Et4 N)[Mo3S7Br6] . Inorganica Chimica Acta. 1994;223(1-2):5–7. [Google Scholar]
- 428.Béreau V, Pernin CG, Ibers JA. Reactivity of the [Mo3(μ 3 −S)(μ 2 −S2)3 Br6]2− anion toward the imidodiphosphinochalcogenido ligands [N(QPPh2 )2]−[Q=S,Se]: synthesis and characterization of [Mo3 (μ 3−S)(μ 2 −S2)3{N(QPPh2 )2}3]Br . Inorganic Chemistry. 2000;39(4):854–856. doi: 10.1021/ic9907056. [DOI] [PubMed] [Google Scholar]
- 429.Fedin VP, Sokolov MN, Geras'ko OA, et al. Triangular W3 S7 4 + and W3 S4 4 + complexes. Inorganica Chimica Acta. 1990;175(2):217–229. [Google Scholar]
- 430.Fedorov VE, Geras'ko OA, Mironov YuV, et al. Journal of Structural Chemistry. 1995;36:1046. [Google Scholar]
- 431.Garriga JM, Llusar R, Uriel S, et al. Synthesis and third-order nonlinear optical properties of [Mo3 (μ 3 −S)(μ 2 −S2 )3]4+ clusters with maleonitriledithiolate, oxalate and thiocyanate ligands. Dalton Transactions. 2003;(23):4546–4551. [Google Scholar]
- 432.Fedin VP, Mironov YV, Virovets AV, Podberezskaya NV, Federov VYe. Synthesis and X-ray structure of the triangular cluster (Et4 N){[Mo3 (μ 3 −S)(μ 2 −S2)3 (NH2 Ph)3Br3]br}br . Polyhedron. 1992;11(16):2083–2088. [Google Scholar]
- 433.Sokolov MN, Geras'ko OA, Solodovnikov SF, Fedin VP. Synthesis and crystal structure of [Th2 (μ−SO4 )2(DMSO)12 ]{[Mo3S7 Br5 (DMSO)]Br}2 ⋅ 2DMSO ⋅ PhCN . Journal of Structural Chemistry. 2004;45(3):490–495. [Google Scholar]
- 434.Ledesma GN, Lang ES, Vázquez-López EM, Abram U. Synthesis and characterization of the first aryltellurium(II) halide complex stabilized by a Te–Te bond from a tellurium ether. Inorganic Chemistry Communications. 2004;7(4):478–480. [Google Scholar]
- 435.Lang ES, Fernandes RM, Jr, Silveira ET, Abram U, Vázquez-López EM. Structures of iodophenyltellurium(II) and diiododi-(β-naphtyl)tellurium(IV) Zeitschrift für anorganische und allgemeine Chemie. 1999;625(8):1401–1404. [Google Scholar]
- 436.Boyle PD, Cross WI, Godfrey SM, et al. Synthesis and characterization of Ph4 Te4 I4, containing a Te4 square, and Ph3 PTe(Ph)I . Angewandte Chemie International Edition. 2000;39(10):1796–1798. doi: 10.1002/(sici)1521-3773(20000515)39:10<1796::aid-anie1796>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
- 437.Lin X, Chen H-Y, Chi L-S, Zhuang H-H. Synthesis and crystal structures of two new trinuclear molybdenum cluster compounds containing a [Mo3 Te7]4 fragment. Polyhedron. 1998;18(1-2):217–223. [Google Scholar]
- 438.Chen H, Lin X, Chi L, Lu C, Zhuang H, Huang J. Synthesis and crystal structures of new triangle tungsten telluride compounds containing a [W3 (μ 3 −Te )(μ 2 −Te2)3 ]4+ cluster core: {W3 Te7[(RO)2 PS2]3}I(R= Et,Pr(i)) . Inorganic Chemistry Communications. 2000;3(6):331–336. [Google Scholar]
- 439.Jones PG, Jeske J. private communication, 2004.
- 440.Vikane O. Acta Chemica Scandinavica, Series A. 1975;29:787. [Google Scholar]
- 441.Dakternieks D, di Giacomo R, Gable RW, Hoskins BF. Investigation of organoyltellurium(IV) halide (dithiolate) complex, crystal structure of di(2-iodo-2 λ 4-benzotellurol-2-yl diethyldithiocarbamate), [C8 H8Te(I)(S2 CNEt2)]2 . Journal of Organometallic Chemistry. 1988;353(1):35–43. [Google Scholar]
- 442.García-Montalvo V, Marcelo-Polo A, Montoya R, Toscano RA, Hernández-Ortega S, Cea-Olivares R. Synthesis, spectroscopic characterization and structural studies of dialkyl dithiophosphinate and N,N-dialkyl dithio- and monothio-carbamate derivatives of 1-iodo-1,1,2,3,4,5-hexahydrotellurophene. Journal of Organometallic Chemistry. 2001;623(1-2):74–80. [Google Scholar]
- 443.García-Montalvo V, Toscano RA, Badillo-Delgado A, Cea-Olivares R. Synthesis, characterization and crystal structure of 1,3-dihydro-2λ 4-benzotellurole-2,2-diyl bis(N-piperidine-dithiocarbamate), [1,2 − C6H4(CH2)2 Te(S2CNC5H10)2] (1), 1,3 dihydro-2λ 4 -benzotellurole-2-iodo-2-yl -diethyldithiophosphinate. Polyhedron. 2001;20(3-4):203–208. [Google Scholar]
- 444.Demartin F, Devillanova FA, Isaia F, Lippolis V, Verani G. Reaction of N,N ′-dimethylimidazolidine-2-selone (L) with I2. Crystal structure of the mixed-valence (L ⋅ I2)(L2)2+ ⋅ 2I3 − compound. Inorganica Chimica Acta. 1997;255(1):203–205. [Google Scholar]
- 445.Maoyu S, Jinling H, Jiaxi L. Science in China, Series B. 1985:8. [Google Scholar]
- 446.Shao-Fang L, Jian-Quan H, Yu-Hui L, Jin-Ling H. Acta Chimica Sinica. 1987;45:842. [Google Scholar]
- 447.Can-Zhong L, Wen T, Hong-Hui Z, Ding-Ming W. Chinese Journal of Structural Chemistry. 1993;12:124. [Google Scholar]
- 448.Maoyu S, Jinling H, Jiaxi L. Chinese Journal of Structural Chemistry. 1984;3:17. [Google Scholar]
- 449.Lu S-F, Huang J-Q, Chen H-B, Wu Q-J. Acta Chimica Sinica. 1993;51:885. [Google Scholar]
- 450.Man-Fang W, Guo-Cong G, Jin-Shun H, Hong-Hui Z, Qian-Er Z, Jia-Xi L. Chinese Journal of Structural Chemistry. 1994;13:221. [Google Scholar]
- 451.Chen J, Lu S-F, Huang Z-X, Yu R-M, Wu Q-J. Synthesis and structural characterization of the novel cluster compound {[Mo3S7(dtp)3]4 ⋅ I}{(HgI3)3} ⋅ 4H2 O(dtp = S2P(OC2H5 )2 −) . Chemistry - A European Journal. 2001;7(9):2002–2006. doi: 10.1002/1521-3765(20010504)7:9<2002::aid-chem2002>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
- 452.Lu C-Z, Zhuang J-N, Chi L-S, et al. A quasi-layer structure of trinuclear molybdenum(IV) cluster, [Mo3S7 (S2CNEt2)3 ]I−S8 . Journal of Chemical Crystallography. 1999;29(9):1019–1022. [Google Scholar]
- 453.Mayor-López MJ, Weber J, Hegetschweiler K, et al. Structure and reactivity of [Mo3 −μ 3 S−(μS2) 2]4+ complexes. Quantum chemical calculations, X-ray structural characterization, and Raman spectroscopic measurements. Inorganic Chemistry. 1998;37(11):2633–2644. doi: 10.1021/ic971214t. [DOI] [PubMed] [Google Scholar]
- 454.Zimmermann H, Hegetschweiler K, Keller T, et al. Preparation of complexes containing the [Mo3 S(S2 )3]4+ core and structure of tris(diethyldithiocarbamato)tris(μ-disulfido)(μ 3-thio)-triangulo-trimolybdenum(IV) iodide. Inorganic Chemistry. 1991;30(23):4336–4341. [Google Scholar]
- 455.Aragoni MC, Arca M, Demartin F, et al. Anti-thyroid drug methimazole: X-ray characterization of two novel ionic disulfides obtained from its chemical oxidation by I2 . Journal of the American Chemical Society. 2002;124(17):4538–4539. doi: 10.1021/ja012731k. [DOI] [PubMed] [Google Scholar]
- 456.Čmelík R, Marek J, Pazdera P. Regioselectivity of electrophilic attacks to 5-amino-3-thioxo-3H-1,2-dithiole-4-carboxylic acid functional derivatives. Elucidation of product structures. Heterocyclic Communications. 2002;8(1):55–60. [Google Scholar]
- 457.Young CG, Kocaba TO, Yan XF, et al. Bridging disulfido complexes of molybdenum and tungsten formed by reductive sulfurization of oxo-molybdenum(VI) complexes and reductive desulfurization of thio(disulfido)-tungsten(VI) complexes. Inorganic Chemistry. 1994;33(26):6252–6260. [Google Scholar]
- 458.Fedin VP, Müller A, Bogge H, et al. Russian Journal of Inorganic Chemistry. 1993;38:1677. [Google Scholar]
- 459.Demartin F, Deplano P, Devillanova FA, Isaia F, Lippolis V, Verani G. Conductivity, FT-Raman spectra, and X-ray crystal structures of two novel [D2I]In (n = 3 and D = N-methylbenzothiazole-2(3H)-selone; n = 7 and D = N-methylbenzothiazole-2(3H)-thione) iodonium salts. First example of I−⋅3 I2 heptaiodide. Inorganic Chemistry. 1993;32(17):3694–3699. [Google Scholar]
- 460.Fox S, Stibrany RT, Potenza JA, Schugar HJ. A novel mixed-valence trinickel complex containing nickel(I), nickel(II) and iodonium moieties. Inorganica Chimica Acta. 2001;316(1-2):122–126. [Google Scholar]
- 461.Nosco DL, Heeg MJ, Glick MD, Elder RC, Deutsch E. Coordination stabilization of organic intermediates. Crystal structure of {[(en2)Co(SCH2CH2NH2)]2I}(NO3)5 ⋅ 4 H2 O, a stable complex of iodine(I) Journal of the American Chemical Society. 1980;102(26):7784–7786. [Google Scholar]
- 462.Lin GH-Y, Hope H. The crystal structure of bis(thiourea)iodine(I) iodide. Acta Crystallographica, Section B. 1972;28(2):643–646. [Google Scholar]
- 463.Boyle PD, Christie J, Dyer T, et al. Further structural motifs from the reactions of thioamides with diiodine and the interhalogens iodine monobromide and iodine monochloride: an FT-Raman and crystallographic study. Journal of the Chemical Society, Dalton Transactions. 2000;(18):3106–3112. [Google Scholar]
- 464.Daga V, Hadjikakou SK, Hadjiliadis N, Kubicki M, Dos Santos JHZ, Butler IS. Synthesis, spectroscopic and structural characterization of novel diiodine adducts with the heterocyclic thioamides, thiazolidine-2-thione (tzdtH), benzothiazole-2-thione (bztzdtH) and benzimidazole-2-thione (bzimtH) European Journal of Inorganic Chemistry. 2002;(7):1718–1728. [Google Scholar]
- 465.Minkwitz R, Preut H, Sawatzki J. Zeitschrift für Naturforschung, Section B. 1988;43:399. [Google Scholar]
- 466.Seppälä E, Ruthe F, Jeske J, Du Mont W-W, Jones PG. Coordination and oxidation of phosphine selenides with iodine: from cation pairs [(R3PSe)2 I+]2 to (iodoseleno)phosphonium ions [R3 PSeI]+ existing as guests in polyiodide matrices. Chemical Communications. 1999;(16):1471–1472. [Google Scholar]
- 467.Jones PG, Jeske J. private communication, 2004.
- 468.Kiriyama H, Mizuhashi Y, Ootani J. Crystal structures of trimethylammonium hexaiodotellurate(IV) and heptaiodotellurate(IV) Bulletin of the Chemical Society of Japan. 1986;59(2):581–585. [Google Scholar]
- 469.Boyle PD, Godfrey SM, Pritchard RG. The reaction of N-methylbenzothiazole-2-selone and 1,1-dimethylselenourea with sulfuryl chloride and dichlorine. Journal of the Chemical Society, Dalton Transactions. 1999;(23):4245–4250. [Google Scholar]
- 470.Hauge S, Marøy K, Odegard T. Acta Chemica Scandinavica, Series A. 1988;42:51. [Google Scholar]
- 471.Krebs B, Ahlers F-P, Lührs E. Synthese, Struktur und Eigenschaften der neuen Bromoselenate(II) [Se3 Br8]2− ,[Se4Br14]2− und [Se5Br12 ]2− Kristallstrukturen von [Cu(i − PropCN)4 ]2[Se3 Br8],[EtPh3 P]2[Se4Br14 ] und [n − Prop4 N]2[Se5 Br12 ] . Zeitschrift für anorganische und allgemeine Chemie. 1991;597(1):115–132. [Google Scholar]
- 472.Janickis V, Törnroos KW, Herberhold M, Songstad J, Milius W. Reaction of selenium with bromine (Se : Br = 1 : 1) in acetonitrile in the presence of tetramethylammonium bromide: synthesis and crystal structure of [(CH3)4 N]2[Se16Br18 ], the salt of a unique bromoselenate(I) anion. Zeitschrift für anorganische und allgemeine Chemie. 2002;628(9-10):1967–1974. [Google Scholar]
- 473.Favier F, Pascal JL, Belin C, Tillard-Charbonnel M. A new pentachlorotellurate(IV): catena-poly[hexakis(acetonitrile)aluminium tris-[tetrachlorotellurate(IV)-μ-chloro] acetonitrile] Acta Crystallographica, Section C. 1997;53(9):1234–1236. [Google Scholar]
- 474.Lippolis V, Isaia F. In: Handbook of Chalcogen Chemistry. Devillanova FA, editor. Cambridge, UK: RSC; 2006. chapter 8.2. [Google Scholar]
- 475.Aragoni MC, Arca M, Devillanova FA, et al. First example of an infinite polybromide 2D-network. Chemical Communications. 2003:2226–2227. doi: 10.1039/b306841b. [DOI] [PubMed] [Google Scholar]
- 476.McCullough JD, Knobler C. Crystal and molecular structure of 2-biphenylyltellurium triiodide C12 H9TeI3 . Inorganic Chemistry. 1976;15(11):2728–2731. [Google Scholar]
- 477.McCullough JD. Crystal and molecular structure of the β modification of 2-biphenylyltellurium triiodide, C12 H9TeI3 . Inorganic Chemistry. 1977;16(9):2318–2321. [Google Scholar]
- 478.Appa Rao GVN, Seshasayee M, Aravamudan G, Radha K. Structure of bis[bis(2-hydroxyethyl)dithiocarbamato]diiodotellurium(IV), [Te(C5H10NO2S2)2I2] . Acta Crystallographica, Section C. 1983;39(8):1018–1020. [Google Scholar]
- 479.Kiriyama H, Nishizaki K. Crystal structure and molecular motion of tetramethylammonium hexaiodotellurate(IV-iodine (1/1) compound. Bulletin of the Chemical Society of Japan. 1986;59(8):2415–2419. [Google Scholar]
- 480.Bird PH, Kumar V, Pant BC. Crystal and molecular structures of the (4-alkoxyphenyl)tellurium(IV) trihalides: (4-EtOPh)TeCl3, (4-EtOPh)TeBr3, and (4-MeOPh)TeI3 . Inorganic Chemistry. 1980;19(9):2487–2493. [Google Scholar]
- 481.Närhi SM, Oilunkaniemi R, Laitinen RS, Ahlgrén M. The reactions of tellurium tetrahalides with triphenylphosphine under ambient conditions. Inorganic Chemistry. 2004;43(12):3742–3750. doi: 10.1021/ic049789v. [DOI] [PubMed] [Google Scholar]
- 482.Kumar RK, Aravamudan G, Udupa MR, Seshasayee M, Hamor TA. Structure of bis(diethyldithiocarbamato)diiodotellurium(IV) Acta Crystallographica, Section C. 1993;49(7):1328–1330. [Google Scholar]
- 483.Lang ES, Manzoni de Oliveira G, Silveira ET, Burrow RA, Vázquez-López EM. Crystal and molecular structure of (α-naphthyl)TeI3 . Journal of Organometallic Chemistry. 2002;664(1-2):306–309. [Google Scholar]
- 484.Chao GY, McCullough JD. The refinement of the structure of the complex of iodine with 1,4-diselenane, C4 H8 Se2 ⋅ 2I2 . Acta Crystallographica. 1961;14(9):940–945. [Google Scholar]
- 485.Jones PG, Jeske J. private communication, 2004.
- 486.Kuhn N, Fawzi R, Kratz T, Steimann M, Henkel G. Zur oxidation von 2-selenoimidazolinen mit iod. Phosphorus, Sulfur and Silicon and Related Elements. 1996;112(1–4):225–233. [Google Scholar]
- 487.Kubiniok S, du Mont W-W, Pohl S, Saak W. The reagent diphenyldiselane/iodine: no phenylselenenyl iodide but a charge transfer complex with cyclic moieties. Angewandte Chemie International Edition. 1988;27(3):431–433. [Google Scholar]
- 488.Jeske J, du Mont W-W, Jones PG. Iodophosphane selenides: building blocks for supramolecular soft-soft chain, helix, and base-pair arrays. Chemistry - A European Journal. 1999;5(1):385–389. [Google Scholar]
- 489.du Mont W-W, Martens A, Pohl S, Saak W. Reversible dismutation and coordination of bis(2,4,6-triisopropylphenyl) diselenide with iodine: a model study that relates to iodine intercalation between selenium chains. Inorganic Chemistry. 1990;29(24):4847–4848. [Google Scholar]
- 490.Cristiani F, Demartin F, Devillanova FA, Isaia F, Saba G, Verani G. An X-ray, spectroscopic and semiempirical quantum-mechanical study on complexes of thiones and selones with molecular diiodine. Journal of the Chemical Society, Dalton Transactions. 1992;(24):3553–3560. [Google Scholar]
- 491.Maddox H, McCullough JD. The crystal and molecular structure of the iodine complex of 1-oxa-4-selenacyclohexane, C4 H8 OSe ⋅ I2 . Inorganic Chemistry. 1966;5(4):522–526. [Google Scholar]
- 492.Godfrey SM, Jackson SL, McAuliffe CA, Pritchard RG. Reaction of R3PSe with I2 ; crystal structures of Ph3PSel2 , (Me2 N)3PSel2 and (Et2N)3 PSel2, the first crystallographically characterised charge-transfer complexes of tertiary phosphine selenides with diiodine. Journal of the Chemical Society, Dalton Transactions. 1997;(23):4499–4502. [Google Scholar]
- 493.Hursthouse MB, Hibbs DE, Bricklebank N. private communication, 2003.
- 494.Rudd MD, Lindeman SV, Husebye S. Three-centre, four-electron bonding and structural characteristics of two-coordinate iodine(I) complexes with halogen and chalcogen ligands. Synthesis, spectroscopic characterization and X-ray structural studies of (triiodo)[tris(dimethylamino)phosphaneselenide]iodine(I) and bis {(triiodo)[tri(N-morpholyl)phosphaneselenide]− iodine(I)}/diiodine molecular complex. Acta Chemica Scandinavica. 1997;51(6-7):689–708. [Google Scholar]
- 495.Godfrey SM, McAuliffe CA, Pritchard RG, Sarwar S. Journal of the Chemical Society, Dalton Transactions. 1997 [Google Scholar]
- 496.Arca M, Cristiani F, Devillanova FA, et al. Reactivity of 1,3,5-trithiacyclohexane and 1,3,5-triselenacyclohexane towards molecular diiodine. Crystal structures of the diiodine adducts. Polyhedron. 1997;16(12):1983–1991. [Google Scholar]
- 497.Hope H, McCullough JD. The crystal structure of the molecular complex of iodine with tetrahydroselenophene, C4 H8Se.I2 . Acta Crystallographica. 1964;17(6):712–718. [Google Scholar]
- 498.Bigoli F, Deplano P, Devillanova FA, et al. Reaction of imidazole-2-selone derivatives with diiodine - synthesis, structural and spectroscopic characterization of the adduct 1,1′-bis(3-methyl-4-imidazolin-2- selone)methane bis(diiodine) and of the 1st examples of I-Se-I hypervalent seleniumcompounds- 1,3-dimethyl-4-imidazolin-2-ylium diiodo selenanide and 1,2-bis(3-methyl- 4-imidazolin-2-ylium diiodo selenanide)-ethane bis(dichloromethane) Gazzetta Chimica Italiana. 1994;124(11):445–454. [Google Scholar]
- 499.Arca M, Demartin F, Devillanova FA, et al. A new assembly of diiodine molecules at the triphenylphosphine sulfide template. Journal of the Chemical Society, Dalton Transactions. 1999;(17):3069–3073. [Google Scholar]
- 500.Rømming C. The crystal structure of the 1:1 addition compound formed by benzyl sulphide and iodine. Acta Chemica Scandinavica. 1960;14:2145–2151. [Google Scholar]
- 501.Herbstein FH, Schwotzer W. Crystal structures of polyiodide salts and molecular complexes. 7. Interaction of thiones with molecular diiodine. The crystal structures of dithizone-diiodine, ethylenethiourea-bis(diiodine), bis(ethylenethiourea)-tris(diiodine), bis(dithizone)-heptakis(diiodine), and 1-(1-imidazolin-2-yl)-2-thioxoimidazolidinium triiodide-(ethylenethiourea-diiodine) Journal of the American Chemical Society. 1984;106(8):2367–2373. [Google Scholar]
- 502.Bigoli F, Deplano P, Ienco A, et al. Structure and bonding of diiodine adducts of the sulfur-rich donors 1,3-dithiacyclohexane-2-thione (ptc) and 4,5-ethylenedithio-1,3-dithiole-2-thione (ttb) Inorganic Chemistry. 1999;38(21):4626–4636. doi: 10.1021/ic9901867. [DOI] [PubMed] [Google Scholar]
- 503.Chao GY, McCullough JD. The refinement of the structure of the complex of iodine with 1,4 dithiane, C4H8S2 .2I2 . Acta Crystallographica. 1960;13(9):727–732. [Google Scholar]
- 504.Herbstein FH, Ashkenazi P, Kaftory M, Kapon M, Reisner GM, Ginsburg D. Propellanes LXXIX. Comparison of the geometries of dithia[n.3.3]propellanes (n = 1,2,3) and dithia(and oxathia)[4.3.3]propellanes. Study of the influence of complexation with HgCl2,I2,CdCl2 and PdCl2 and of formation of sulfoxides on some of these compounds. Demonstration of the ‘klammer’ effect. Structures of eighteen crystals. Acta Crystallographica, Section B. 1986;42(6):575–601. [Google Scholar]
- 505.Bricklebank N, Coles SJ, Forder SD, Hursthouse MB, Poulton A, Skabara PJ. Diiodine complex of diferrocenyl(phenyl)phosphine sulfide: the structural and electrochemical behaviour of Fc2 (Ph)PS ⋅ I2 . Journal of Organometallic Chemistry. 2005;690(2):328–332. [Google Scholar]
- 506.Freeman F, Ziller JW, Po HN, Keindl MC. Reactions of imidazole-2-thiones with molecular iodine and the structures of two crystalline modifications of the 1:1 1,3-dimethylimidazole-2-thione-diiodine charge-transfer complex (C5 H8I2 N2S) . Journal of the American Chemical Society. 1988;110(8):2586–2591. [Google Scholar]
- 507.Arca M, Demartin F, Devillanova FA, et al. Synthesis, X-ray crystal structure and spectroscopic characterization of the new dithiolene [Pd(Et2timdt)2] and of its adduct with molecular diiodine [Pd(Et2timdt)2] ⋅ I2 ⋅ CHCl3 (Et2timdt=monoanion of 1,3-diethylimidazolidine-2,4,5-trithione) Journal of the Chemical Society, Dalton Transactions. 1998;(22):3731–3736. [Google Scholar]
- 508.Atzei D, Deplano P, Trogu EF, Bigoli F, Pellinghelli MA, Vacca A. Interaction of diiodine with some tetra-substituted dithiooxamides. Crystal and molecular structure of bis(morpholinothiocarbonyl)bis(diiodine) Canadian Journal of Chemistry. 1988;66(6):1483–1489. [Google Scholar]
- 509.Antoniadis CD, Corban GJ, Hadjikakou SK, et al. Synthesis and characterization of (PTU)I2(PTU= 6−n−propyl−2−thiouracil) and (CMBZT)I2 (CMBZT = 5-chloro-2-mercaptobenzothiazole) and possible implications for the mechanism of action of anti-thyroid drug. European Journal of Inorganic Chemistry. 2003;2003(8):1635–1640. [Google Scholar]
- 510.Lee L, Crouch DJ, Wright SP, et al. Supramolecular polymers of 4,5-bis(bromomethyl)-1,3-dithiole-2-thione—dihalogen adducts. CrystEngComm. 2004;6:612–617. [Google Scholar]
- 511.Allshouse J, Haltiwanger RC, Allured V, DuBois MR. Molecular and polymeric compounds resulting from Lewis acid interactions with [CpMo(μ− S)N-t-Bu]2 . Inorganic Chemistry. 1994;33(12):2505–2506. [Google Scholar]
- 512.Lyon EJ, Musie G, Reibenspies JH, Darensbourg MY. Sulfur site iodine adduct of a nickel thiolate complex. Inorganic Chemistry. 1998;37(26):6942–6946. doi: 10.1021/ic980852o. [DOI] [PubMed] [Google Scholar]
- 513.Kiel G. Zeitschrift für Naturforschung, Section B. 1981;36:55. [Google Scholar]
- 514.Baker PK, Harris SD, Durrant MC, Hughes DL, Richards RL. Preparation and structural characterization of the charge-transfer complex (12[ane]S4 .I2)∞ (12[ane]S4 =1,4,7,10-tetrathiacyclododecane) Acta Crystallographica, Section C. 1995;51(4):697–700. [Google Scholar]
- 515.Bois d'Enghien-Peteau M, Meunier-Piret J, van Meerssche M. Journal de Chimie Physique et de Physico-Chimie Biologique. 1968;65:1221. [Google Scholar]
- 516.Khitrich NV, Seifullina II, Starikova ZA. Russian Journal of Inorganic Chemistry. 2002;47:85. [Google Scholar]
- 517.Ito S, Liang H, Yoshifuji M. Preparation, structure, and some coordination properties of 2-chloro-3,3-diphenyl-3-thioxo-1-(2,4,6-tri-t-butylphenyl)-1,3-diphosphapropene. Chemical Communications. 2003:398–399. doi: 10.1039/b211230b. [DOI] [PubMed] [Google Scholar]
- 518.Apperley DC, Bricklebank N, Hursthouse MB, Light ME, Coles SJ. Vibrational, 31P NMR and crystallographic studies of diiodine adducts of some bidentate tertiary phosphine sulfides. Polyhedron. 2001;20(15-16):1907–1913. [Google Scholar]
- 519.Bock H, Nagel N, Seibel A. Liebigs Annalen. 1997:2151. [Google Scholar]
- 520.Yamamoto M, Wu LP, Kuroda-Sowa T, Maekawa M, Suenaga Y, Munakata M. Preparation, characterization and X-ray crystal structures of I2 and copper(II) complexes of 2,11-dithia[3.3]paracyclophane. Inorganica Chimica Acta. 1997;258(1):87–91. [Google Scholar]
- 521.Apperley DC, Bricklebank N, Burns SL, Hibbs DE, Hursthouse MB, Malik KMA. Crystal structure of triphenylphosphine sulfide diiodine; the first crystallographically characterised 11 molecular charge-transfer complex of a tertiary phosphine sulfide with diiodine. Journal of the Chemical Society, Dalton Transactions. 1998;(8):1289–1292. [Google Scholar]
- 522.Aragoni MC, Arca M, Demartin F, et al. A theoretical investigation of the donor ability of [M(R,R′timdt)2 ] dithiolene complexes towards molecular diiodine (M = Ni, Pd, Pt; R,R′timdt = formally monoreduced disubstituted imidazolidine-2,4,5-trithione) European Journal of Inorganic Chemistry. 2004;2004(15):3099–3109. [Google Scholar]
- 523.Allen DW, Berridge R, Bricklebank N, et al. Structural and magnetic properties of a novel ferrocenyl-diiodine charge transfer complex. Inorganic Chemistry. 2003;42(13):3975–3977. doi: 10.1021/ic034092f. [DOI] [PubMed] [Google Scholar]
- 524.Bigoli F, Deplano P, Mercuri ML, Pellinghelli MA, Trogu EF. Spectrophotometric study, crystal and molecular structure of the 1:1 complex between 1,3-dithiolane-2-thione and diiodine. Phosphorus, Sulfur, and Silicon and the Related Elements. 1992;70(1-2):175–182. [Google Scholar]
- 525.Blake AJ, Gould RO, Radek C, Schröder M. The synthesis and low-temperature single crystal X-ray structure of the charge-transfer complex ([9]aneS3)2(I2)4([9]aneS3 = 1,4,7-trithiacyclononane) Chemical Communications. 1993:1191–1193. [Google Scholar]
- 526.Cristiani F, Devillanova FA, Isaia F, Lippolis V, Verani G, Demartin F. Spectroscopic studies and X-ray crystal structures of charge-transfer complexes of 1,4,7-trithiacyclononane with diiodine. Heteroatom Chemistry. 1993;4(6):571–578. [Google Scholar]
- 527.Blake AJ, Cristiani F, Devillanova FA, et al. Structural and solution studies of diiodine charge-transfer complexes of thioether crowns. Journal of the Chemical Society, Dalton Transactions. 1997;(8):1337–1346. [Google Scholar]
- 528.Bigoli F, Deplano P, Mercuri ML, Pellinghelli MA, Trogu EF. Synthetic, structural and spectroscopic studies of the donating properties of sulphur-rich molecules towards I2: X-ray structure of 1,3-dithiole-2-thione diiodine. Phosphorus, Sulfur, and Silicon and the Related Elements. 1992;72(1–4):65–72. [Google Scholar]
- 529.Blake AJ, Devillanova FA, Garau A, et al. Thioether—iodine charge-transfer complexes. Synthesis and low-temperature single-crystal structures of complexes of penta-, hexa- and octa-dentate homoleptic thioether macrocycles. Journal of the Chemical Society, Dalton Transactions. 1998;(12):2037–2046. [Google Scholar]
- 530.Hartl H, Steidl S. Zeitschrift für Naturforschung, Section B. 1977;32:6. [Google Scholar]
- 531.Schollhammer P, Pétillon FY, Talarmin J, Muir KW, Fun HK, Chinnakali K. Halogenation and alkylation at a Mo2 III(μ−S) site. Crystal structure of the metal-sulfenyl halide complex [Mo2 (η 5-C5Me5)2 (μ−SMe)2(μ−SI)(CO)2 ]I5 . Inorganic Chemistry. 2000;39(25):5879–5882. doi: 10.1021/ic000591u. [DOI] [PubMed] [Google Scholar]
- 532.Bock H, Rauschenbach A, Näther C, Kleine M, Havlas Z. Kristallzüchtung und Strukturbestimmung von Donator/Akzeptor-Komplexen aus 1,2,4,5-Tetrakis(alkylthio)benzolen und Brom oder Iod. Liebigs Annalen. 1996;12:2185–2194. [Google Scholar]
- 533.Blake AJ, Li W-S, Lippolis V, Schröder M. 1,4,8,11-Tetrakis(diiodine)-1,4,8,11-tetrathiacyclotetradecane. Acta Crystallographica, Section C. 1997;53(7):886–888. [Google Scholar]
- 534.Leung W-H, Chim JLC, Hou H, Hun TSM, Williams ID, Wong W-T. Oxidation reactions of dithiocarbamate complexes of ruthenium(II) Inorganic Chemistry. 1997;36(20):4432–4437. doi: 10.1021/ic970053q. [DOI] [PubMed] [Google Scholar]
- 535.Blake AJ, Gould RO, Li W-S, et al. Silver-thioether crown complexes as templates for the synthesis of extended polyiodide networks: synthesis and X-ray crystal structures of [Ag2 ([15]aneS5 )2]I12 , [Ag([18]aneS6)]I7 , [Ag([18]aneS6)]I3 , and [Ag([9]aneS3 )]I5 . Inorganic Chemistry. 1998;37(20):5070–5077. [Google Scholar]
- 536.Ahlsen EL, Strømme KO. The crystal structure of the addition compound N-methylthiocaprolactam-iodine (1:1) Acta Chemica Scandinavica, Series A. 1974;28:175–184. [Google Scholar]
- 537.Heuer WB, Pearson WH. Synthesis and characterization of nickel-group bis(dithiocroconate) complexes and dicyanomethylene-substituted analogues. Journal of the Chemical Society, Dalton Transactions. 1996;(17):3507–3513. [Google Scholar]
- 538.Corban GJ, Hadjikakou SK, hadjiliadis N, et al. Synthesis, structural characterization, and computational studies of novel diiodine adducts with the heterocyclic thioamides N-methylbenzothiazole-2-thione and benzimidazole-2-thione: implications with the mechanism of action of antithyroid drugs. Inorganic Chemistry. 2005;44(23):8617–8627. doi: 10.1021/ic0484396. [DOI] [PubMed] [Google Scholar]
- 539.Bigoli F, Deplano P, Mercuri ML, et al. Evaluation of thermodynamic parameters for highly correlated chemical systems: a spectrophotometric study of the 1:1 and 2:1 equilibria between I2 and 1,1′-methylenebis(3-methyl-4-imidazoline-2-thione)(mbit) and 1,1′-ethylenebis(3-methyl-4-imidazoline-2-thione)(ebit). Crystal and molecular structures of mbit.2I2 and ebit.2I2 . Journal of the Chemical Society, Dalton Transactions. 1996;(17):3583–3589. [Google Scholar]
- 540.Bransford JW, Meyers EA. Bis(triphenylphosphinesulfide-S-iodine, C36 H30I6 P2S2 . Crystal Structure Communications. 1978;7:697–702. [Google Scholar]
- 541.Bigoli F, Deplano P, Devillanova FA, et al. Syntheses, X-ray crystal structures, and spectroscopic properties of new nickel dithiolenes and related compounds. Inorganic Chemistry. 1997;36(6):1218–1226. doi: 10.1021/ic960930c. [DOI] [PubMed] [Google Scholar]
- 542.Lu FL, Keshavarz M, Srdanov G, Jacobson RH, Wudl F. A new preparation of 5-(alkylthio)-1,2-dithiole-3-thiones and a highly functionalized 1,3-dithiole-2-thione. Journal of Organic Chemistry. 1989;54(9):2165–2169. [Google Scholar]
- 543.Srdanov G, Wudl F. Polymeric Materials: Science and Engineering. 1988;59:1074. [Google Scholar]
- 544.Atzei D, Deplano P, Trogu EF, et al. Interaction of diiodine with Et4 todit = 4,5,6, 7-tetrathiocino [1,2−b:3 ,4−b′]diimidazolyl-1,3,8,10-tetraethyl-2,9-dithione. Crystal and molecular structure of Et4 todit ⋅ 2I2 . Canadian Journal of Chemistry. 1989;67(9):1416–1420. [Google Scholar]
- 545.Tipton AL, Lonergan MC, Stern CL, Shriver DF. Structure, conductivity and Raman spectrum of 4,7,13,16-tetraoxa-1,10-dithiacyclooctadecanebis(diiodine) Inorganica Chimica Acta. 1992;201(1):23–27. [Google Scholar]
- 546.Serpe A, Bigoli F, Cabras MC, et al. Pd-dissolution through a mild and effective one-step reaction and its application for Pd-recovery from spent catalytic converters. Chemical Communications. 2005:1040–1042. doi: 10.1039/b415799k. [DOI] [PubMed] [Google Scholar]
- 547.Bigoli F, Deplano P, Mercuri ML, et al. Evaluation of thermodynamic parameters on higly correlated chemical systems: a spectrophotometric study of the 1:1 and 1:2 equilibria between I2 and R4todit = 4 ,5,6,7-tetrathiocino[1,2− b:3 ,4−b′]diimidazolyl-1,3,8,10-tetraalkyl-2,9-dithione; (R = Bu, Me (new data); Et, Ph (reinvestigation)). Crystal and molecular structure of the charge-transfer complex Bu4 todit ⋅ 2I2 . Canadian Journal of Chemistry. 1995;73(3):380–388. [Google Scholar]
- 548.Cristiani F, Devillanova FA, Isaia F, Lippolis V, Verani G, Demartin F. Charge transfer complexes of benzoxazole-2(3H)-thione and benzoxazole-2(3H)-selone with diiodine: X-ray crystal structure of benzoxazole-2(3H)-thione bis(diiodine) Polyhedron. 1995;14(20-21):2937–2943. [Google Scholar]
- 549.Lee JQ, Sampson ML, Richardson JF, Noble ME. Halogenation at a dimolybdenum(V) and ditungsten(V) sulfur bridge: metallosulfenyl halides M2(μ−SX) and [M2(μ−SX3)]n. Charge-transfer interactions. Inorganic Chemistry. 1995;34(20):5055–5064. [Google Scholar]
- 550.Blake AJ, Devillanova FA, Garau A, et al. Structural and spectroscopic studies of charge-transfer adducts formed between IBr and thioether crowns . Journal of the Chemical Society, Dalton Transactions. 1999;(4):525–532. [Google Scholar]
- 551.McCullough JD, Knobler C, Baker C, Hope H. Crystal and molecular structure of the iodine monobromide complex of 1,4-dithiane, C4H8S2 .2IBr . Inorganic Chemistry. 1971;10(4):697–700. [Google Scholar]
- 552.Skabara PJ, Bricklebank N, Berridge R, et al. Crystal engineering towards highly ordered polymeric structures of 1,3-dithiole-2-thione—dihalogen adducts. Journal of the Chemical Society, Dalton Transactions. 2000;(19):3235–3236. [Google Scholar]
- 553.Asseily GA, Davies RP, Rzepa HS, White AJP. A solid-state structural and theoretical study on the 1:1 addition compounds of thioethers with dihalogens and interhalogens I-X(X= I,Br,Cl) . New Journal of Chemistry. 2005;29:315–319. [Google Scholar]
- 554.Arca M, Devillanova FA, Garau A, et al. 31P CP-MAS NMR, vibrational, and X-ray characterization of the adducts of triphenylphosphine sulfide with ICl and IBr. Zeitschrift für anorganische und allgemeine Chemie. 1998;624(4):745–749. [Google Scholar]
- 555.Demartin F, Devillanova FA, Garau A, Isaia F, Lippolis V, Verani G. Reactions of N-methylbenzothiazole-2(3H)-thione (1) and -selone (2) with ICl synthesis and X-ray crystal structures of the charge-transfer adducts 1 ⋅ ICl (I) and 2 ⋅ ICl (II) Polyhedron. 1999;18(24):3107–3113. [Google Scholar]
- 556.Knobler C, McCullough JD. Crystal and molecular structure of the iodine monochloride complex of 1-oxa-4-selenacyclohexane, C4H8OSe.ICl. Inorganic Chemistry. 1968;7(2):365–369. [Google Scholar]
- 557.Jeske J, du Mont W-W, Ruthe F, Jones PG, Mercuri LM, Deplano P. Properties of chalcogen-chalcogen bonds, 23 novel mesityltellurium cations from selenenation and tellurenation reactions of dimesityl telluride in the presence of the Br2 /AgSbF6 reagent. European Journal of Inorganic Chemistry. 2000;2000(7):1591–1599. [Google Scholar]
- 558.Hague S, Maroy K. Acta Chemica Scandinavica. 1998;52:445. [Google Scholar]
- 559.Nakanishi W, Hayashi S, Yamaguchi S, Tamao K. First Br4 four centre—six electron and Se2 Br5 seven centre–ten electron bonds in nonionic bromine adducts of selenanthrene. Chemical Communications. 2004:140–141. doi: 10.1039/b310655a. [DOI] [PubMed] [Google Scholar]
- 560.Hammerschmidt A, Beckmann I, Läge M, Krebs B. A novel crown-ether stabilized oxonium halogenochalcogenate(IV): [H7 O3(Bis-dibromo-dibenzo-30-crown-10] [Se2 Br9] ⋅ 1.5CH2 Cl2 . Zeitschrift für Naturforschung, Section B. 2004;59:1438. [Google Scholar]
- 561.Hasche S, Reich O, Beckmann I, Krebs B. Stabilisierung von Oxohalogeno- und Halogenochalkogen(IV)-Säuren durch Protonenakzeptoren - Darstellung, Struktur und Eigenschaften von [C4 H10 NO]2[SeOCl4], [C4 H10NO]2[Se2Br10] und [(CH3)2CHC(NH2)(OH)][Te3 Cl13] ⋅ (CH3)2CHCN . Zeitschrift für anorganische und allgemeine Chemie. 1997;623(1–6):724–734. [Google Scholar]
- 562.Regelmann B, Klinkhammer KW, Schmidt A. (CH3)2 SBr2 − einige Reaktionen und Strukturen. Zeitschrift für anorganische und allgemeine Chemie. 1997;623(10):1633–1638. [Google Scholar]
- 563.Bock H, Havlas Z, Rauschenbach A, Näther C, Kleine M. Structurally recognizable electron density transfer in the donor–acceptor complex {1,2,4,5-tetra(thioethyl) benzenebromine2}infity. Chemical Communications. 1996:1529–1530. [Google Scholar]
- 564.Allegra G, Wilson GE, Benedetti E, Pedone C, Albert R. Structure of a halosulfonium salt. The 1:1 adduct of thiophane with bromine. Journal of the American Chemical Society. 1970;92(13):4002–4007. [Google Scholar]
- 565.Haas A, Kasprowski J, Pryka M. Chemische Berichte. 1992;125:789. [Google Scholar]
- 566.Gysling HJ, Luss HR, Gardner SA. Organotellurium(IV) complexes: synthesis and molecular structure of 2,6-diacetylpyridine (C,N,O) tellurium(IV) trichloride. Journal of Organometallic Chemistry. 1980;184(3):417–431. [Google Scholar]
- 567.Pietikainen J, Laitinen RS, Konu J, Valkonen J. Zeitschrift für Naturforschung, Section B. 2001;56:1369. [Google Scholar]
- 568.Teijido MV, Zukerman-Schpector J, Camillo RL, et al. Dichloro[(E)-2-chloro-1-vinyl-cyclohexanol](4-methoxyphenyl)Te(IV). A case of conformational polymorphism . Zeitschrift für Kristallographie. 2003;218(9):636–641. [Google Scholar]
- 569.Kuhn N, Abu-Rayyan A, Eichele K, Piludu C, Steimann M. Weak interionic interactions in 2-haloimidazolium hexahalotellurates(IV) [1] Zeitschrift für anorganische und allgemeine Chemie. 2004;630(4):495–497. [Google Scholar]
- 570.Boese R, Haas A, Hoppmann E, Merz K, Olteanu A. Preparation of acyclic and heterocyclic tellurathianitrogen compounds: contributions to a better understanding of complex reaction pathways. Zeitschrift für anorganische und allgemeine Chemie. 2002;628(3):673–680. [Google Scholar]
- 571.Hinrichs W, Mandak D, Klar G. Crystal Structure Communications. 1982;11:309. [Google Scholar]
- 572.Zukerman-Schpector J, Camillo RL, Comasseto JV, Santos RA, Caracelli I. Trichloro[(Z)-2-chloro-1,2-diphenylvinyl]tellurium(IV) Acta Crystallographica, Section C. 1999;55(9):1577–1579. [Google Scholar]
- 573.Sato S, Ishida H, Nagae M, Kashino S, Furukawa Y, Weiss A. Cationic motions and crystal structures of 1,3,5-trimethylpyridinium hexachlorometallates [(CH3)2 C5H3N(CH3)]2MCl6 (M is Sn and Te) studied by 1H NMR and X-ray diffraction. Journal of Molecular Structure. 1998;441(1):39–46. [Google Scholar]
- 574.Srivastava PC, Bajpai S, Lath R, Bajpai SM, Kumar R, Butcher RJ. Molecular aggregates, zig-zag 2D-stairs, -ribbons and 3D-supramolecular networks of cyclic telluranes assisted by intermolecular Te ⋯ Cl and Te ⋯ Br secondary bonding. Polyhedron. 2004;23(9):1629–1639. [Google Scholar]
- 575.Abriel W. Zeitschrift für Naturforschung, Section B. 1986;41:592. [Google Scholar]
- 576.Chadha RK, Drake JE, Khan MA. Structure of (p-bromophenyl)dichloro(phenyl)tellurium(IV), (C6 H5)(C6 H4 Br)TeCl2 . Acta Crystallographica, Section C. 1983;39(1):45–48. [Google Scholar]
- 577.Huang C-K, O'Brien DH, Irgolic KJ, Meyers EA. Crystal Structure Communications. 1982;11:1593. [Google Scholar]
- 578.Zukerman-Schpector J, Camillo RL, Comasseto JV, Cunha RLOR, Lemos FCD, Caracelli I. Acetonyldichloro[(Z)-2-chloro-1-methyl-2-phenylethenyl]tellurium(IV) Acta Crystallographica, Section C. 1999;55(11):1930–1932. [Google Scholar]
- 579.Hinrichs W, Mandak D, Klar G. Crystal Structure Communications. 1982;11:1781. [Google Scholar]
- 580.Alcock NW, Harrison WD. An aryltellurium mixed halide anion. Preparation and crystal and molecular structure of [NBun4][PhTeCl3I] . Journal of the Chemical Society, Dalton Transactions. 1983;(9):2015–2018. [Google Scholar]
- 581.Chadha RK, Drake JE, Hencher JL. Structure of bis(p-bromophenyl)tellurium(IV) dichloride. Canadian Journal of Chemistry. 1983;61(6):1222–1225. [Google Scholar]
- 582.Jones RH, Hamor TA. X-ray study of bonding in crystalline bis(4-hydroxy-3-methylphenyl)tellurium(IV) dichloride (β-isomer) Journal of Organometallic Chemistry. 1984;262(2):151–155. [Google Scholar]
- 583.Chadha RK, Drake JE. Structure of dichlorobis(p-methoxyphenyl)tellurium(IV), [TeCl2(C7H7 O)2] . Acta Crystallographica, Section C. 1984;40(8):1349–1352. [Google Scholar]
- 584.Bergman J, Sidén J, Maartmann-Moe K. Structure elucidation of a zwitterionic 2-oxazoline obtained by cyclofunctionalization of n-acetyldiallylamine with tellurium tetrachloride. Tetrahedron. 1984;40(9):1607–1610. [Google Scholar]
- 585.Cameron TS, Amero RB, Cordes RE. Crystal Structure Communications. 1980;9:533. [Google Scholar]
- 586.Achampong A, Parkins AW. Reaction of tellurium tetrachloride with cyclohexene and the crystal structure of racemic bis(trans-2-chlorocyclohexyl)tellurium dichloride. Journal of the Chemical Society, Dalton Transactions. 1997;(22):4367–4370. [Google Scholar]
- 587.Chadha RK, Drake JE. Reaction of benzyltrimethylsilane with tellurium(IV) chloride. Structure of bis(p-trimethylsilyltolyl)tellurium dichloride. Journal of Organometallic Chemistry. 1984;268(2):141–147. [Google Scholar]
- 588.Buscher K, Heuer S, Krebs B. Zeitschrift für Naturforschung, Section B. 1981;36:307. [Google Scholar]
- 589.Raston CL, Secomb RJ, White AH. ‘Tellurium acetylacetonates’: crystal structures of 1,1-dichloro-1-telluracyclohexane-3,5-dione and 1-telluracyclohexane-3,5-dione. Journal of the Chemical Society, Dalton Transactions. 1976;(22):2307–2310. [Google Scholar]
- 590.Chadha RK, Drake JE, Khan MA. Crystal structure of diethylammonium tetrachloro(p-phenoxyphenyl)tellurate. Canadian Journal of Chemistry. 1984;62(1):32–35. [Google Scholar]
- 591.Ahmed MAK, McWhinnie WR, Hamor TA. Tellurated azobenzenes: the crystal and molecular structure of (2-phenylazophenyl-C,7 N′)tellurium(IV) trichloride. Journal of Organometallic Chemistry. 1985;281(2-3):205–211. [Google Scholar]
- 592.Chivers T, Enright GD, Sandblom N, Schatte G, Parvez M. Synthesis and reactions of tert-butylimidotellurium dihalides: X-ray structures of [Cl2Te(μ− NtBu)2 TeCl2]3 and (tBuO)2 Te(μ− NtBu)2 Te(OtBu)2 . Inorganic Chemistry. 1999;38(23):5431–5436. [Google Scholar]
- 593.Pohl S, Saak W, Krebs B. Zeitschrift für Naturforschung, Section B. 1985;40:251. [Google Scholar]
- 594.Caracelli I. Crystal structure of bis(benzyltriethylammonium) hexachlorotellurate(IV), [C7 H7(C2H5)3N]2(TeCl6) . Zeitschrift für Kristallographie: New Crystal Structures. 2004;219(3):273. [Google Scholar]
- 595.Milne J, Philippot E, Maurin M. Revue de Chimie Minerale. 1984;21:749. [Google Scholar]
- 596.Chakravorty R, Irgolic KJ, Meyers EA. Trichloro(2-phenylthiophenyl)tellurium. Acta Crystallographica, Section C. 1985;41(10):1545–1547. [Google Scholar]
- 597.Castellano EE, Zukerman-Schpector J, Ferreira JTB, Comassetto JV. Structure of dichloro[(4,4-dimethyl-5-oxo-2,3,4,5-tetrahydro-2-furyl)methyl](4-methoxyphenyl)tellurium(IV) . Acta Crystallographica, Section C. 1986;42(1):44–46. [Google Scholar]
- 598.Chadha RK, Drake JE. Crystal structure of dimeric p-phenoxyphenyltellurium(IV) trichloride. Journal of Organometallic Chemistry. 1985;293(1):37–43. [Google Scholar]
- 599.Michelet A, Toffoli P, Rodier N. Hexachlorotellurate(IV) de bis(triméthyl-2,4,6 pyridinium) Acta Crystallographica, Section C. 1986;42(4):413–415. [Google Scholar]
- 600.Abriel W, Friedrich C. Zeitschrift für Naturforschung, Section B. 1985;40:1691. [Google Scholar]
- 601.Christofferson GD, Sparks RA, McCullough JD. The crystal structure of α-dimethyltellurium dichloride. Acta Crystallographica. 1958;11(11):782–788. [Google Scholar]
- 602.Ziolo RF, Troup JM. Experimental observation of the tellurium(IV) bonding and lone-pair density in dimethyltellurium dichloride by x-ray diffraction techniques. Journal of the American Chemical Society. 1983;105(2):229–235. [Google Scholar]
- 603.Bergman J, Engman L. Tellurium in organic synthesis V. X-ray structure of 8-ethoxy-4-cyclooctenyltellurium trichloride and its relevance to the TeO2-oxidation of alkenes. Journal of Organometallic Chemistry. 1979;181(2):335–347. [Google Scholar]
- 604.Narhi SM, Oilunkaniemi R, Laitinen RS, Ahlgren M. Bis(triphenyltelluronium) hexachlorotellurate. Acta Crystallographica, Section E. 2004;60(5):798–800. [Google Scholar]
- 605.Abriel W. Symmetry rules for the stereochemistry of the lone-pair electrons in TeX 6 2 − (X = C1,Br,I) and the structures of 1,2-ethanediammonium hexachlorotellurate(IV) and 1,2-ethanediammonium hexachlorostannate(IV) Acta Crystallographica, Section B. 1986;42(5):449–453. [Google Scholar]
- 606.Hitchcock PB, Huang Q-G, Lappert MF, Wei X-H. Lanthanide metal amides revisited; the use of the 2,2,6,6-tetramethylpiperidinato (TMP) ligand. Journal of Materials Chemistry. 2004;14:3266–3273. [Google Scholar]
- 607.Fernandes RM, Jr, de Oliveira GM, Lang ES, Vázquez-López EM. Complex tellurium salts with supramolecular bidimensional lattices: synthesis and X-ray characterization of (2- Br- C5NH5)2[TeX6](X= Cl,Br) . Zeitschrift für anorganische und allgemeine Chemie. 2004;630(15):2687–2691. [Google Scholar]
- 608.Husebye S, Meyers EA, Zingaro RA, Comasseto JV, Petragnani N. Structure of dichloro(p-methoxyphenyl)(8-oxo-7-oxabicyclo[4.3.0]non-5-yl)tellurium(IV)-chloroform (1/0·27) Acta Crystallographica, Section C. 1987;43(6):1147–1151. [Google Scholar]
- 609.Valle G, Russo U, Calogero S. The crystal structure of bis-(NNN′N′-tetramethyl)-α α′-dithiobisformamidinium hexachlorotellurate(IV): possible effects of hydrogen bondings on the distortion of the hexachlorotellurate(IV) ion. Inorganica Chimica Acta. 1980;45:L277–L280. [Google Scholar]
- 610.Russo U, Calogero S, Valle G. Crystal Structure Communications. 1980;9:829. [Google Scholar]
- 611.Batchelor RJ, Einstein FWB, Jones CHW, Sharma RD. X-ray crystal structures of bis(dichlorophenyltelluro)methane and bis(trichlorotelluro)methane. Organometallics. 1987;6(10):2164–2168. [Google Scholar]
- 612.Chadha RK, Drake JE. Crystal structure of bis(p-phenoxyphenyl) tellurium dichloride. Journal of Chemical Crystallography. 1986;16(6):907–912. [Google Scholar]
- 613.de Matheus M, Torres L, Piniella JF, Briansó JL, Miravittles C. Structure of dichlorobis(p-phenoxyphenyl)tellurium(IV) Acta Crystallographica, Section C. 1991;47(4):703–705. [Google Scholar]
- 614.Borchers D, Weiss A. Berichte der Bunsen-Gesellschaft für Physikalische Chemie. 1987;91:1182. [Google Scholar]
- 615.Zukerman-Schpector J, Haiduc I, Dabdoub MJ, et al. Zeitschrift für Kristallographie. 2002;217:609. [Google Scholar]
- 616.Herrara C, Zingaro RA, Meyers EA. Structure of dimethylammonium N,N,N′,N′-tetramethylformamidinium hexachlorotellurate(IV) Acta Crystallographica, Section C. 1993;49(5):973–975. [Google Scholar]
- 617.Wu Y, Ding K, Wang Y, Zhu Y, Yang L. Transmetallation reaction of Schiff-base-type arylmercury compounds with 4-ethoxyphenyltellurium(IV) trichloride and the crystal structure of (4-ethoxyphenyl)[(2-benzylideneamino-5-methyl)phenyl]tellurium(IV) dichloride. Journal of Organometallic Chemistry. 1994;468(1-2):13–19. [Google Scholar]
- 618.Borecka B, Cameron TS, Malik MA, Smith BC. Stereospecific addition of aryltellurium(IV) trichlorides to 3-methylcyclohexene: the X-ray crystal structure of p-anisyl(trans-2-chloro-trans-3-mnethyl-1-cyclohexyl)tellurium(IV) dichloride. Canadian Journal of Chemistry. 1994;72(8):1844–1848. [Google Scholar]
- 619.Zukerman-Schpector J, Camillo RL, Dabdoub MJ, Begnini ML, Caracelli I. Butyldichloro(phenylethynyl)tellurium(IV) Acta Crystallographica, Section C. 1999;55(4):648–650. [Google Scholar]
- 620.Zukerman-Schpector J, Camillo RL, Comasseto JV, et al. Dichloro[(E)-2-chloro-1-(2-hydroxyprop-2-yl)vinyl](4-methoxyphenyl)tellurium(IV) Acta Crystallographica, Section C. 1999;55(8):1339–1342. [Google Scholar]
- 621.von Deuten K, Schnabel W, Klar G. Crystal Structure Communications. 1980;9:761. [Google Scholar]
- 622.Zukerman-Schpector J, Camillo RL, Caracelli I, Comasseto JV, Cunha RLOR. Revue Roumaine de Chimie. 2002;47:1021. [Google Scholar]
- 623.Klapótke TM, Krumm B, Mayer P, Polborn K, Ruscitti OP. Spectroscopic and structural studies on polyfluorophenyl tellurides and tellurium(IV) dihalides. Inorganic Chemistry. 2001;40(20):5169–5176. doi: 10.1021/ic010149r. [DOI] [PubMed] [Google Scholar]
- 624.Beckmann J, Dakternieks D, Duthie A, Smith NA. Secondary bonding in para-substituted diphenyltellurium dichlorides (p −XC6H4)2 TeCl2 (X=H, Me, MeO) probed by 125Te MAS NMR spectroscopy. Crystal and molecular structure of (p −MeC6H4)2TeCl2 . Journal of Organometallic Chemistry. 2003;669(1-2):149–153. [Google Scholar]
- 625.Mirochnik AG, Bukvetskii BV, Storozhuk TV, Karasev VE. Russian Journal of Inorganic Chemistry. 2003;48:582. [Google Scholar]
- 626.Kandasamy K, Kumar S, Singh HB, Wolmershauser G. Influence of both steric effects and Te⋯N intramolecular nonbonded interactions on the stabilization of organotellurium compounds incorporating [2-[1-(3,5-dimethylphenyl)-2- naphthyl]-4,5-dihydro-4,4-dimethyloxazole] . Organometallics. 2003;22(24):5069–5078. [Google Scholar]
- 627.Lang ES, de Oliveira GM, Fernandes RM, Jr, Vázquez-López EM. Supramolecular assembling of complex tellurium salts: synthesis and crystal structures of {Cs[PhTeCl4] ⋅ CH3OH} and Cs[PhTeBr4 ] . Zeitschrift für anorganische und allgemeine Chemie. 2004;630(5):717–721. [Google Scholar]
- 628.Hey E, Ergezinger C, Dehnicke K. Zeitschrift für Naturforschung, Section B. 1989;44:205. [Google Scholar]
- 629.Abid KY, Al-Salim NI, Greaves M, McWhinnie WR, West AA, Hamor TA. Synthesis and reactions of 1,6-bis(2-butyltellurophenyl)-2,5-diazahexa-1,5-diene and related compounds. The crystal and molecular structures of 2-(butyldichlorotelluro)benzaldehyde and bis[2-(hydroxyiminomethyl)phenyl] ditelluride. Journal of the Chemical Society, Dalton Transactions. 1989;(9):1697–1703. [Google Scholar]
- 630.Zukerman-Schpector J, Castellano EE, Oliva G, Comasseto JV, Stefani HA. Structure of dichloro[(Z)-2-chloro-2-p-tolylvinyl](p-methoxyphenyl)tellurium(VI) Acta Crystallographica, Section C. 1991;47(5):960–962. [Google Scholar]
- 631.Massa W, Lau C, Mühlen M, Neumüller B, Dehnicke K. Communication [Te6N8 (TeCl4)4] - tellurium nitride stabilized by tellurium tetrachloride. Angewandte Chemie International Edition. 1998;37(20):2840–2842. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2840::AID-ANIE2840>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- 632.Drews T, Seppelt K. Fe(OTeF5)3, preparation, structure, and reactivity. Zeitschrift für anorganische und allgemeine Chemie. 1991;606(1):201–207. [Google Scholar]
- 633.James MA, Knop O, Cameron TS. Crystal structures of (n − Pr 4N)2SnCl6, (n − Pr 4N) [TeCl4(OH)], (n − Pr 4N)2[Te2Cl10] (nominal), and (n − Pr 4N)2 [Se2O2Cl6], with observations on Z2L10 2n− and Z2L8 n− dimers in genera. Canadian Journal of Chemistry. 1992;70(6):1795–1821. [Google Scholar]
- 634.Kozawa K, Uchida T. Structure of benzo[a]phenothiazine pentachlorotellurate(IV) Acta Crystallographica, Section C. 1993;49(2):267–270. [Google Scholar]
- 635.Beckmann J, Dakternieks D, Duthie A, Mitchell C, Schürmann M. Observation of Te ⋯ π and X ⋯ X bonding in para-substituted diphenyltellurium dihalides, (p − Me2NC6H4)(p − YC6H4)TeX2 (X = CI, Br, I;Y=H, EtO, Me2N)− . Australian Journal of Chemistry. 2005;58(2):119–127. [Google Scholar]
- 636.Munzenberg J, Noltemeyer M, Roesky HW. Chemische Berichte. 1989;122:1915. [Google Scholar]
- 637.du Bois A, Abriel W. Zeitschrift für Naturforschung, Section B. 1990;45:573. [Google Scholar]
- 638.Roesky HW, Mazzah A, Hesse D, Noltemeyer M. Chemische Berichte. 1991;124:519. [Google Scholar]
- 639.Abe M, Detty MR, Gerlits OO, Sukumaran DK. 21-telluraporphyrins. 3. Synthesis, structure, and spectral properties of a 21,21-dihalo-21-telluraporphyrin . Organometallics. 2004;23(19):4513–4518. [Google Scholar]
- 640.Munzenberg J, Roesky HW, Noltemeyer M, Besser S, Herbst-Irmer R. Zeitschrift für Naturforschung, Section B. 1993;48:199. [Google Scholar]
- 641.Kushch PP, Konovalikhin SV, Shilov GV, Atovmyan LO, Khannanova TA, Lyubovskaya RN. Russian Chemical Bulletin. 2000:370. [Google Scholar]
- 642.Barton AJ, Levason W, Reid G, Tolhurst V-A. Synthesis and properties of ditelluroether complexes of osmium, trans-[OsCl2 (L − L)2] and trans-[OsCl(PPh3)(L − L)2] PF6(L − L = o − C6 H4 (TeMe)2, RTe(CH2)3 TeR (R=Ph or Me)) Polyhedron. 2000;19(2):235–240. [Google Scholar]
- 643.Chivers T, Fedorchuk C, Schatte G, Brask JK. Syntheses and X-ray structures of boraamidinate complexes of lithium, phosphorus, and tellurium. Canadian Journal of Chemistry. 2002;80(7):821–831. [Google Scholar]
- 644.Zukerman-Schpector J, Haiduc I, Camillo RL, Comasseto JV, Cunha RLOR, Jorge A. Supramolecular self-assembly through telluriumhalogen secondary bonds: a hexagonal grid of Te2Cl2 and Te6Cl6 rings in the solid state structure of 1,1,3-trichloro-2,4,5,6-tetrahydro-1H-1λ 4-benzo[b]tellurophene. Canadian Journal of Chemistry. 2002;80(11):1530–1537. [Google Scholar]
- 645.Zukerman-Schpector J, Camillo RL, Comasseto JV, Cunha RLOR, Caracelli I. Benzyltriethylammonium 2,2,2,4-tetrachloro-2,5-dihydro-1,2λ 5-oxatellurole. Acta Crystallographica, Section C. 2000;56(7):897–898. doi: 10.1107/s0108270100005515. [DOI] [PubMed] [Google Scholar]
- 646.Russo U, Valle G, Calogero S. Crystal and molecular structure of bis(NN′ -dimethylformamidine) disulphide hexachlorotellurate. Journal of the Chemical Society, Dalton Transactions. 1980:2303–2305. [Google Scholar]
- 647.Chivers T, Schatte G. Pyramidal inversion isomers in the solid-state structure of the tricyclic antimony-tellurium imido complex TeSb2Cl2(NtBu)4 . Inorganic Chemistry. 2002;41(4):1002–1006. doi: 10.1021/ic0109694. [DOI] [PubMed] [Google Scholar]
- 648.Gockel S, Haas A, Probst V, Boese R, Müller I. Contributions to bis(perfluoroalkyl) chalkogenide chemistry: preparation of (Rf)2 SeO[Rf = C2F5, (CF3)2CF, n − C4F9],(R′ f)2TeX2[X=F,CI : R′ f = n − C4F9;X = Br : R′ f = n − C3F7, n − C4F9], (CF3)2 Te (NSO)2, and (C2F5)2 Te(OH)NO3 . Journal of Fluorine Chemistry. 2000;102(1-2):301–311. [Google Scholar]
- 649.Balde L, Julien R, Morgant G. Crystal structure of 5-azoniaoctane-1,8-diammonium hexachloro tellurate(IV)–hydrogen chloride (1/1), (TeCI6)(C7N3H21) ⋅ HCI. Zeitschrift für Kristallographie: New Crystal Structures. 2001;216(2):229. [Google Scholar]
- 650.Laitalainen T, Sundberg MR, Uggla R, Bergman J. Stereoselective synthesis, molecular structure and NBO analyses of cis-3,5-di(chloromethyl)-1,4-oxatellurane(IV) 4,4-dichloride. Polyhedron. 1997;16(14):2441–2445. [Google Scholar]
- 651.Reich O, Hasche S, Bonmann S, Krebs B. [H3O ⋅ dibenzo-18 – crown – 6)][Te2Br9] and [H5O2][Te2CI9] ⋅ 2C4H8O2: two new oxonium halotellurates (IV) containing a novel type of [Te2X9] anions. Zeitschrift für anorganische und allgemeine Chemie. 1998;624(3):411–418. [Google Scholar]
- 652.Liaw W-F, Chiou S-J, Lee G-H, Peng S-M. A discrete chlorotellurate [CI4Te − Mn(CO)5]−: coordinative addition of the metalloanion [Mn(CO)5]− to TeCl4 . Inorganic Chemistry. 1998;37(5):1131–1134. [Google Scholar]
- 653.Fleischer H, Dienes Y, Schollmeyer D. Tellurium(IV) tetraalkoxides and chlorotellurium(IV) alkoxides derived from β-donor alcohols. European Journal of Inorganic Chemistry. 2002;2002(8):2073–2081. [Google Scholar]
- 654.Viossat B, Khodadad P, Rodier N. Structure cristalline de l'hexachlorotellurate(IV) d'hydroxydiméthylsoufrediméthylsulfoxyde (1/2) [(CH3)2SOH]2(TeCI6) ⋅ 2(CH3)2SO . Journal of Molecular Structure. 1981;71:237–244. [Google Scholar]
- 655.Pietikäinen J, Maaninen A, Laitinen RS, Oilunkaniemi R, Valkonen J. Halogenation of tellurium by SO2CI2. Formation and crystal structures of (H3O)[Te3CI13] ⋅ 1/2SO2, [(C4H8O)2H][TeCI5] ⋅ (C4H8O), [(Me2SO)2H]2[TeCI6] and [Ni(NCCH3)6][Te2CI10] . Polyhedron. 2002;21(11):1089–1095. [Google Scholar]
- 656.Alcock NW, Harrison WD. Secondary bonding. Part 7. Crystal and molecular structures of diphenyltellurium dichloride and phenyltellurium trichloride. Journal of the Chemical Society, Dalton Transactions. 1982;(2):251–255. [Google Scholar]
- 657.Einstein FWB, Jones T. Structure of phenyltellurium trichloride. Acta Crystallographica, Section B. 1982;38(2):617–619. [Google Scholar]
- 658.Singh HB, Sudha N, Butcher RT. Synthesis and characterization of novel chiral ortho-tellurated complexes derived from [(S)-1-(dimethylamino)ethyl]benzene: crystal and molecular structure of {2-[(S)-1-(dimethylamino)ethyl]phenyl}tellurium trichloride. Inorganic Chemistry. 1992;31(8):1431–1435. [Google Scholar]
- 659.Collins PH, Webster M. Crystal and molecular structure of tetraphenylarsonium aquotetrachlorohydroxotellurate(IV) Journal of the Chemical Society, Dalton Transactions. 1974;(15):1545–1549. [Google Scholar]
- 660.Krebs B, Paulat V. Darstellung und Eigenschaften trimerer Chlorotellurate(IV). Kristallstruktur von (C6H5)3CTe3CI13 . Zeitschrift für Naturforschung, Section B. 1979;34:900. [Google Scholar]
- 661.Zukerman-Schpector J, Castellano EE, Comasseto JV, Santos RA. Structure of dichloro[(2,4-dimethyl-5-oxo-2,3,4,5-tetrahydro-2-furyl)methyl]-(4-methoxyphenyl)tellurium(IV) Journal of Chemical Crystallography. 1993;23(3):181–184. [Google Scholar]
- 662.Korp JD, Bernal I, Turley JC, Martin GE. Crystal and molecular structure of phenoxatellurin 10,10-dichloride. Inorganic Chemistry. 1980;19(9):2556–2560. [Google Scholar]
- 663.Waśkowska A, Janczak J, Czapla Z. Crystal structure of diguanidine hexachlorate tellurate(IV) Journal of Alloys and Compounds. 1993;196(1-2):255–257. [Google Scholar]
- 664.Sundberg MR, Uggla R, Laitalainen T, Bergman J. Influence of secondary bonding on the intradimer distance of trichloro(ethane-1,2-diolato-O, O′)tellurate(IV) Journal of the Chemical Society, Dalton Transactions. 1994;(22):3279–3283. [Google Scholar]
- 665.Dabdoub MJ, Justino A, Guerrero PG, Jr, Zukerman-Schpector J. Unexpected reaction of 1-butyltelluro-4-phenyl-1-buten-3-yne under Rupe reaction conditions. Organometallics. 1998;17(9):1901–1903. [Google Scholar]
- 666.Khodadad P, Viossat B, Toffoli P, Rodier N. Acta Crystallographica, Section B. 1979;35:2896. [Google Scholar]
- 667.Baldé L, Julien R, Silvestre J-P, Jouan M. Crystal structure of cadaverine (1,5-pentanediamine)hexachlorotellurate (IV), [C5N2H16][TeCI6] Zeitschrift für Kristallographie: New Crystal Structures. 2001;216(1):59–60. [Google Scholar]
- 668.Zukerman-Schpector J, Haiduc I, Camillo RL, Comasseto JV, Cunha RLOR, Caracelli I. Acetonyldichloro[(Z)-2-chloro-2-phenylvinyl]tellurium(IV), helical chains of metal complexes. Acta Crystallographica, Section C. 2001;57(6):749–750. doi: 10.1107/s0108270101004656. [DOI] [PubMed] [Google Scholar]
- 669.Willey GR, Aris DR, Aemaeg W, Errington W. Ligand oxidation of small-ring aza- and thia-macrocycles involving C—H activation: crystal structures of [MeN(CH2NMe)2CH]2[MX6] ⋅ MeCN (M=Te, X=CI, Br; M=Sn, X=Br and [C6H11S3]2TeBr6] ⋅ MeCN) Inorganica Chimica Acta. 2001;317(1-2):304–313. [Google Scholar]
- 670.Takaguchi Y, Horn E, Furukawa N. Preparation and X-ray structure analysis of 1,1,5,5,9,9-hexachloro-1,5,9-tritelluracyclododecane (Cl6([12]aneTe3)) and its redox behavior. Organometallics. 1996;15(24):5112–5115. [Google Scholar]
- 671.Marsh RE. Space group p: an update. Acta Crystallographica, Section B. 2005;61(3):359. doi: 10.1107/S0108768105009651. [DOI] [PubMed] [Google Scholar]
- 672.Ryan JM, Xu Z. [C6H5NH(CH3)2]2 Te2I10: secondary I—I bonds build up a 3D network. Inorganic Chemistry. 2004;43(14):4106–4108. doi: 10.1021/ic049443k. [DOI] [PubMed] [Google Scholar]
- 673.Beckmann J, Dakternieks D, Duthie A, Mitchell C. An orthorhombic polymorph of dichlorobis[4-(dimethylamino)phenyl]tellurium. Acta Crystallographica, Section E. 2005;61(4):o986–o987. [Google Scholar]
- 674.Ishida H, Kashino S. Bis(dimethylammonium) hexachlorotellurate(IV) Acta Crystallographica, Section C. 1998;54(12):1811–1813. [Google Scholar]
- 675.Singh HB, Sudha N, West AA, Hamor TA. Orthotellurated derivatives of N, N-dimethylbenzylamine: crystal and molecular structures of [2-(dimethylaminomethyl)phenyl]tellurium(IV) tribromide and [2-(butyldichlorotelluro)benzyl]dimethylammonium chloride. Journal of the Chemical Society, Dalton Transactions. 1990;(3):907–913. [Google Scholar]
- 676.Lau C, Neumüller B, Dehnicke K. Synthese und kristallstruktur des tellur-nitridchlorids [Te11N6CI26] . Zeitschrift für anorganische und allgemeine Chemie. 1996;622(4):739–744. [Google Scholar]
- 677.Zingaro RA, Pathirana HMKK, Reibenspies JH, Meyers EA. Reactions of tellurium tetrahalides with glycols. Phosphorus, Sulfur and Silicon and the Related Elements. 1991;62(1–4):91–99. [Google Scholar]
- 678.Zukerman-Schpector J, Caracelli I, Dabdoub MJ, Dabdoub VB, Pereira MA. (Z)-1-(dichloro-p-methoxyphenyltelluro)-1-phenyl-2-thiophenylethene. Acta Crystallographica, Section C. 1996;52(11):2772–2774. [Google Scholar]
- 679.Cameron TS, Amero RB, Cordes RE. Crystal Structure Communications. 1980;9:539. [Google Scholar]
- 680.Asahara M, Taomoto S, Tanaka M, Erabi T, Wada M. Dependence of the rotational barrier of the Ar-group in RArTeX2 on the R-group [Ar = 2,6 −(MeO)2C6H3; R = Me, Et, i-Pr; X = Cl, Br, I] Dalton Transactions. 2003;(5):973–979. [Google Scholar]
- 681.Fleischer H, Mathiasch B, Schollmeyer D. Adducts of tellurium tetrachloride with allyl alcohol and allyl acetate: 1,2- vs 1,3-addition and structure and dynamics of Te—O interactions in different phases. Organometallics. 2002;21(3):526–533. [Google Scholar]
- 682.Pietikainen J, Laitinen RS, Valkonen J. Preparation and crystal structure of [(Me3Si)2N]2 TeCI2 . Acta Chemica Scandinavica. 1999;53(11):963–967. [Google Scholar]
- 683.Roesky HW, Münzenberg J, Bohra R, Noltemeyer M. Syntheses and crystal structures of compounds containing short Te—N bonds. Journal of Organometallic Chemistry. 1991;418(3):339–348. [Google Scholar]
- 684.Tamura R, Shimizu H, Ono N, Azuma N, Suzuki H. New carbon-carbon bond formation reactions using bis(acylmethyl)- and bis[(alkoxycarbonyl)methyl]tellurium dichlorides. Organometallics. 1992;11(2):954–958. [Google Scholar]
- 685.Ishida H, Kashino S. Structure of tert-butylammonium hexachlorotellurate(IV) Acta Crystallographica, Section C. 1992;48(9):1673–1675. [Google Scholar]
- 686.Zukerman-Schpector J, Castellano EE, Comasseto JV, Stefani HA. Structure of dichloro(p-methoxyphenyl)(2-oxocyclohexyl)tellurium(IV) Acta Crystallographica, Section C. 1988;44(12):2182–2184. [Google Scholar]
- 687.Koch H-J, Roesky HW, Besser S, Herbst-Irmer R. Synthese und Struktur des ersten Tellur-haltigen Borazin-Derivats und einer Tellur-haltigen Bor—Stickstoff-Spiro-Verbindung. Chemische Berichte. 1993;126(3):571–574. [Google Scholar]
- 688.Dakternieks D, O'Connell J, Tiekink ERT. Synthesis and crystal structures of the monomeric organotellurium(IV) trihalides: trans-2-ethoxy-cyclohexyl-tellurium(IV) trichloride, trichloro(2-chlorobicyclo[2.2.1]hept-7-yl)-λ 4-tellurane, and mesityltellurium(IV) tribromide. Journal of Organometallic Chemistry. 2000;598(1):49–54. [Google Scholar]
- 689.Lang ES, Fernandes RM, Jr, Peppe C, Burrow RA, Vázquez-López EM. Tellurium-halogen secondary bonding in the crystal structures of [Q]+[PhTeCl4]− (Q=C5NH6, 2-Br-C5NH5, {2-Br-C5NH5} {CO(NH3)4CI2}) . Zeitschrift für anorganische und allgemeine Chemie. 2003;629(2):215–218. [Google Scholar]
- 690.Fleischer H, Schollmeyer D. Spectroscopic investigation of the system TeCl4 /[NEt4]PF6 in solution and the crystal structure of [NEt4]2[Te2Cl10] . Zeitschrift für Naturforschung, Section B. 2004;59(11-12):1209–1213. [Google Scholar]
- 691.Naumann D, Ehmanns L, Tebbe K-F, Crump W. Kristallstruktur-Untersuchungen von Bis(pentafluorphenyl)tellurdihalogeniden C6F5TeHal2 (Hal = Cl, Br) Zeitschrift für anorganische und allgemeine Chemie. 1993;619(7):1269–1276. [Google Scholar]
- 692.Chivers T, Doxsee DD, Gao X, Parvez M. Preparations and X-ray structures of compounds containing the four-membered ring. Inorganic Chemistry. 1994;33(25):5678–5681. [Google Scholar]
- 693.Haas A, Pryka M. Chemische Berichte. 1995;128:11. [Google Scholar]
- 694.Zukerman-Schpector J, Comasseto JV, Stefani HA. Dichloro[(Z)-2-chloro-2-phenylvinyl](4-methoxyphenyl)tellurium(IV) Acta Crystallographica, Section C. 1995;51(5):861–863. [Google Scholar]
- 695.Folkerts H, Dehnicke K, Magull J. Zeitschrift für Naturforschung, Section B. 1995;50:573. [Google Scholar]
- 696.Farran J, Alvarez-Larena A, Piniella JF, Germain G, Torres-Castellanos L. Zeitschrift für Kristallographie. 1995;210:65. [Google Scholar]
- 697.Meyers EA, Zingaro RA, Comasseto JV, Stefani HA, Chieffi A. Zeitschrift für Kristallographie. 1995;210:306. [Google Scholar]
- 698.Borecka B, Cameron TS, Malik MA, Smith BC. Stereospecific reactions of aryltellurium(IV) trichlorides with 3-cyclohexene-1-methanol and 3-cyclohexene-1,1-dimethanol: the X-ray crystal structure of 2′, 4′-dimethoxyphenyl(trans-6-oxabicyclo[3.2.1]oct-4-yl)tellurium(IV) dichloride. Canadian Journal of Chemistry. 1995;73(2):255–263. [Google Scholar]
- 699.Meyers EA, Junk T, Irgolic KJ. Zeitschrift für Kristallographie. 1995;210:552. [Google Scholar]
- 700.Lau C, Neumüller B, Hiller W, et al. Se2NBr3, Se2NCl5, Se2NCl− 6: new nitride halides of selenium(III) and selenium(IV) Chemistry - A European Journal. 1996;2:1373–1378. [Google Scholar]
- 701.Krebs B, Hucke M, Hein M, Schaffer A. Zeitschrift für Naturforschung, Section B. 1983;38:20. [Google Scholar]
- 702.Krebs B, Schaffer A, Hucke M. Zeitschrift für Naturforschung, Section B. 1982;37:1410. [Google Scholar]
- 703.Maaninen A, Boeré RT, Chivers T, Parvez M. Preparation and X-ray structure of 4-N,N′-bis(trimethylsilyl)-amino-3,5-diisopropylphenylselenium trichloride. Zeitschrift für Naturforschung, Section B. 1999;54(9):1170–1174. [Google Scholar]
- 704.Wudl F, Zellers ET. 1,1-Dichloro-2,5-bis(N-chlorothioimino)-3,4-dicyanoselenophene. Journal of the American Chemical Society. 1980;102(16):5430–5431. [Google Scholar]
- 705.Roesky HW, Weber K-L, Seseke U, et al. Structural and nuclear magnetic resonance studies of short selenium-nitrogen bonds. Journal of the Chemical Society, Dalton Transactions. 1985;(3):565–571. [Google Scholar]
- 706.Müller U, Eckhoff B. Crystal structure of bis(tetramethylammonium)-hexachloroselenate(IV) - Acetonitrile (1/1), [N(CH3)4]2[SeCl6] ⋅ CH3CN, a structure related to epasolite. Zeitschrift für Kristallographie: New Crystal Structures. 1999;214(4):505–506. [Google Scholar]
- 707.Amendola A, Gould ES, Post B. The crystal structure of 1,4-diselenane tetrachloride. Inorganic Chemistry. 1964;3(8):1199–1200. [Google Scholar]
- 708.Krebs B, Rieskamp N, Schaffer A. Zeitschrift für anorganische und allgemeine Chemie. 1986;532:118. [Google Scholar]
- 709.Wang B-C, Cordes AW. Crystal structure of dipyridinium(II) oxytetrachloroselenate(IV),C10H8N2H2 2+SeOCl4 2−. Highly coordinated selenium compound. Inorganic Chemistry. 1970;9(7):1643–1650. [Google Scholar]
- 710.Cordes AW, Oakley RT, Reed RW. Structure of 1,1-dichloro-3,5-diphenyl-4H-1,2,4,6-selenatriazine. Acta Crystallographica, Section C. 1986;42(12):1889–1890. [Google Scholar]
- 711.Marsden CJ, Sheldrick GM, Taylor R. Acta Crystallographica, Section B. 1977;33:139. [Google Scholar]
- 712.Thompson MD, Berlin KD, Smith GS, van der Helm D, Muchmore SW, Fidelis KA. Organic Preparations and Procedures International. 1986;18:353. [Google Scholar]
- 713.Privett AJ, Craig SL, Jeter DY, Cordes AW, Oakley RT, Reed RW. Structure of N-(N-chlorobenzimidoyl)benzamidinium decachlorodiselenate(IV) acetonitrile solvate. Acta Crystallographica, Section C. 1987;43(10):2023–2025. [Google Scholar]
- 714.Herberhold M, Keller M, Kremnitz W, et al. Phenylselenolato complexes of cyclopentadienylrhodium: structural variety in the solid state and in solution. Zeitschrift für anorganische und allgemeine Chemie. 1998;624(8):1324–1328. [Google Scholar]
- 715.Czado W, Maurer M, Müller U. Chloroselenate mit zwei- und vierwertigem Selen: 77Se-NMR-Spektren, Synthese und Kristallstrukturen von (PPh4)2SeCl6 ⋅ 2CH2Cl2, (NMe3Ph)2SeCl6, (K-18-Krone-6)2SeCl6 ⋅ 2CH3CN, PPh4Se2Cl9 . Zeitschrift für anorganische und allgemeine Chemie. 1998;624(11):1871–1876. [Google Scholar]
- 716.Vogler S, Dehnicke K. Zeitschrift für Naturforschung, Section B. 1992;47:301. [Google Scholar]
- 717.Gillespie RJ, Kent JP, Sawyer JF. Reactions of S4N4 and S3 N3 Cl3 with selenium chlorides. The preparations and crystal structures of SeS2 N2Cl2, (S5 N5)(SeCl5), and the disordered materials (SexS3 − x N2Cl)(SbCl6) . Inorganic Chemistry. 1990;29(6):1251–1259. [Google Scholar]
- 718.Akabori S, Takanohashi Y, Aoki S, Sato S. Correlation between the structure and reactivity of the selenide dihalide of the new reducing reagent NaBH4−R2SeX2 on the highly selective reduction of amides. X-ray molecular structure of bis-(2-chloroethyl)selenium dichloride. Journal of the Chemical Society, Perkin Transactions 1. 1991:3121–3125. [Google Scholar]
- 719.Geiser U, Schlueter JA, Dudek JD, Williams JM. Structure of bis(ethylenedithio)tetrathiafulvalenium dichlorocyanoselenate ( 2:1), (BEDT − TTF)2Cl2SeCN . Molecular Crystals and Liquid Crystals Science and Technology, Section A. 1996;284:203–210. [Google Scholar]
- 720.McCullough JD, Hamburger G. The crystal structure of diphenylselenium dichloride. Journal of the American Chemical Society. 1942;64(3):508–513. [Google Scholar]
- 721.Lindqvist I, Nahringbauer G. The crystal structure of SeOCl2 ⋅ 2C5H5N . Acta Crystallographica. 1959;12(9):638–642. [Google Scholar]
- 722.Stammler HG, Weiss J. private communication, 1992.
- 723.Hauge S, Janickis V, Marøy K. Crystal structures of phenyltrimethylammonium salts of hexabromodiselenate(II), [C6H5(CH3)3N]2[Se2Br6], hexachlorodiselenate(II), [C6H5(CH3)3N]2[Se2Cl6], and a mixed bromo-chlorodiselenate (II), [C6H5(CH3)3N]2[Se2Br5 Cl] . Acta Chemica Scandinavica. 1998;52(4):435–440. [Google Scholar]
- 724.McCullough JD, Marsh RE. The crystal structure of di-p-tolyselenium dichloride and di-p-tolylselenium dibromide. Acta Crystallographica. 1950;3(1):41–45. [Google Scholar]
- 725.Neumüller B, Lau C, Dehnicke K. Die Kristallstrukturen von SeCl3 +SbCl6 −, SeBr3 + GaBr4 − , PCl4 + SeCl5 − , und PPh4SeCl4 2−⋅2CH3 CN . Zeitschrift für anorganische und allgemeine Chemie. 1996;622(11):1847–1853. [Google Scholar]
- 726.Fenske D, Ergezinger C, Dehnicke K. Zeitschrift für Naturforschung, Section B. 1989;44:857. [Google Scholar]
- 727.Ahlers F-P, Lührs E, Krebs B. Synthese, Struktur und Eigenschaften der neuen trinuklearen Halogenoselenate(IV) [Se3Cl13 ]− und [Se3Br13]− Kristallstrukturen von [Ph3C][Se3Cl13] und [Ph3C][Se3Br13] . Zeitschrift für anorganische und allgemeine Chemie. 1991;594(1):7–22. [Google Scholar]
- 728.Heckmann G, Wolmershauser G. Chemische Berichte. 1993;126:1071. [Google Scholar]
- 729.Folkerts H, Dehnicke K, Magull J, Goesmann H, Fenske D. Phosphaniminato-trichloroselenate(II): synthese und kristallstrukturen von [SeCl(NPPh3)2]+SeCl3 − und [Me3SiN(H)PMe3]2 +[Se2Cl6]2− . Zeitschrift für anorganische und allgemeine Chemie. 1994;620(7):1301–1306. [Google Scholar]
- 730.Martin LD, Perozzi EF, Martin JC. Sulfuranes. 39. Syntheses and structure studies of stable difluoro- and dichlorosulfuranes. Apicophilicity orders in sulfuranes. Journal of the American Chemical Society. 1979;101(13):3595–3602. [Google Scholar]
- 731.Baenziger NC, Buckles RE, Maner RJ, Simpson TD. Crystal structure of the chlorine complex of bis(p-chlorophenyl) sulfide. Journal of the American Chemical Society. 1969;91(21):5749–5755. [Google Scholar]
- 732.Kuhn N, Bohnen H, Fahl J, Bläser D, Boese R. On the reaction of l,3-diisopropyl-4,5-dimethylimidazol-2-ylidene with sulfur halides and sulfur oxygen halides. Chemische Berichte. 1996;129(12):1579–1586. [Google Scholar]
- 733.Lang ES, Burrow RA, Braga AL, Dornelles L. Crystal structure of (2E)-3-bromo-2-[bromo(chloro)phenyl-λ 4-tellanyl]-2-propen-1-ol, BrCH= C(TeBrClPh)(CH2OH) Zeitschrift für Kristallographie: New Crystal Structures. 2000;215(3):459–460. [Google Scholar]
- 734.Dahan F, Lefebvre-Soubeyran O. Acta Crystallographica, Section B. 1976;32:2859. [Google Scholar]
- 735.Chauhan AKS, Kumar A, Srivastava RC, Beckmann J, Duthie A, Butcher RJ. Synthesis and reactivity of para-substituted benzoylmethyltellurium(II and IV) compounds: observation of intermolecular C-H-O hydrogen bonding in the crystal structure of (p − MeOC6H4 COCH2)2TeBr2 . Journal of Organometallic Chemistry. 2004;689(2):345–351. [Google Scholar]
- 736.Kuhn N, Abu-Rayyan A, Eichele K, Schwarz S, Steimann M. Weak interionic interactions in 2-bromoimidazolium derivatives. Inorganica Chimica Acta. 2004;357(6):1799–1804. [Google Scholar]
- 737.Hazell AC. Acta Chemica Scandinavica. 1972;26:1510. [Google Scholar]
- 738.Alcock NW, Harrison WD. Acta Crystallographica, Section B. 1982;38:2677. [Google Scholar]
- 739.Knobler C, McCullough JD. Crystal and molecular structure of 2-biphenylyltellurium tribromide, C12 H9TeBr3 . Inorganic Chemistry. 1977;16(3):612–615. [Google Scholar]
- 740.Schnabel W, von Deuten K, Klar G. Phosphorus and Sulfur. 1982;13:345. [Google Scholar]
- 741.Chitsaz S, Neumüller B, Dehnicke K. Crystal structure of bis(bromotriphenyl)-arsenic(V)-hexabromotellurate(IV), [Ph3 AsBr]2[TeBr6] . Zeitschrift für Naturforschung, Section B. 1999;54(8):1092–1094. [Google Scholar]
- 742.Detty MR, Luss HR. 12-Te-5 pertelluranes from 1,6-dioxa-6a-tellurapentalenes. Synthesis, structure, and reactivity. Journal of Organic Chemistry. 1983;48(26):5149–5151. [Google Scholar]
- 743.Behmel P, Jones PG, Sheldrick GM, Ziegler M. Untersuchungen zur molekülstruktur von Carbon-säureamid-Verbindungen der Säure H2TeBr6 . Journal of Molecular Structure. 1980;69:41–51. [Google Scholar]
- 744.Srivastava PC, Sinha A, Bajpai S, Schmidt HG, Noltemeyer M. Dimethyl tellurium (IV) derivatives: synthesis, spectroscopic characterisation and structures of Me2TeBr2 and Me2 Te(OCOC6H5)2 . Journal of Organometallic Chemistry. 1999;575(2):261–268. [Google Scholar]
- 745.Borgias BA, Scarrow RC, Seidler MD, Weiner WP. Acta Crystallographica, Section C. 1985;41:476. [Google Scholar]
- 746.Hammerschmidt A, Bonmann S, Läge M, Krebs B. Novel halogenochalcogeno(IV) acids: [H3 O(benzo-18 -crown-6)]2[Te2Br10] and [H5 O2(dibenzo-24 -crown-8 )]2[Te2Br10] . Zeitschrift für anorganische und allgemeine Chemie. 2004;630(12):2035–2041. [Google Scholar]
- 747.Detty MR, Luss HR, McKelvey JM, Geer SM. 12-Te-5 pertelluranes from 1,2-oxatellurolyl-1-ium halides. Synthesis, structure, and reactivity. The quest for delocalization in 10-Te-3 telluranes and 12-Te-5 pertelluranes of thiathiophthene structure. Journal of Organic Chemistry. 1986;51(10):1692–1700. [Google Scholar]
- 748.Christofferson GD, McCullough JD. The crystal structure of diphenyltellurium dibromide. Acta Crystallographica. 1958;11(4):249–256. [Google Scholar]
- 749.Beckmann J, Dakternieks D, Duthie A, Mitchell C. Dibromodiphenyltellurium(IV) Acta Crystallographica, Section E. 2004;60(12):o2511–o2512. [Google Scholar]
- 750.Cameron TS, Amero RB, Chan C, Cordes RE. Crystal Structure Communications. 1980;9:543. [Google Scholar]
- 751.Al-Salim N, West AA, McWhinnie WR, Hamor TA. 2-Pyridyl- and quinolin-2-yl-functionalised organyltellurium ligands. The stabilisation of diorganyl tritellurides. The crystal and molecular structures of 2-(2-pyridyl)phenyltellurium(IV) tribromide, dimethyldithiocarbamato[2-(2-pyridyl)phenyl]tellurium(II), and p-ethoxyphenyl 2-(2-pyridyl)phenyl telluride. Journal of the Chemical Society, Dalton Transactions. 1988;(9):2363–2371. [Google Scholar]
- 752.Janickis V, Herberhold M, Milius W. Synthesis and crystal structure of bis(methyltriphenylphosphonium) hexabromotellurate(IV)-bis{dibromoselenate(II)}, [PMePH3]2[TeBr6(SeBr2)2], the salt of a mixed-valence bromotellurate(IV)-selenate(II) anion. Zeitschrift für anorganische und allgemeine Chemie. 2003;629(1):29–34. [Google Scholar]
- 753.Lang ES, de Oliveira GM, Fernandes RM, Jr, Vázquez-López EM. Synthesis and characterization of the first [Q]+ [PhTeX4]− complex salt (Q = 2-Br-C5 NH5; Ph = C6 H5; X=Br, I) exhibiting a polymeric chain structure. Inorganic Chemistry Communications. 2003;6(7):869–872. [Google Scholar]
- 754.Abriel W, du Bois A. Structure of bis(tetraphenylarsonium) hexabromotellurate(IV) Acta Crystallographica, Section C. 1989;45(12):2002–2003. [Google Scholar]
- 755.Farran J, Alvarez-Larena A, Piniella JF, Germain G, Torres-Castellanos L. Dibromobis(4-methoxyphenyl)tellurium(IV) Acta Crystallographica, Section C. 1995;51(4):639–641. [Google Scholar]
- 756.Janickis V, Nečas M, Novosad J, Dušek M, Petříček V. Commensurate and incommensurate structures of the hexabromotellurate(IV) bis{dibromodiselenate(I)} ion - [(C2 H5)n(C6H5)4 − nP]2[TeBr6 (Se2Br2)2], n= 0,1 . Acta Crystallographica, Section B. 2002;58(6):977–985. doi: 10.1107/s010876810201772x. [DOI] [PubMed] [Google Scholar]
- 757.Kunnari SM, Oilunkaniemi R, Laitinen RS, Ahlgrén M. An unexpected tetrahydrofuran ring opening: synthesis and structural characterization of Ph3 PO(CH2)4TeBr4 . Journal of the Chemical Society, Dalton Transactions. 2001;(23):3417–3418. [Google Scholar]
- 758.Mallikaratchy P, Norman RE, Fronczek FR, Junk T. Tribromo(3,5-dimethyl-2-nitro-phenyl-κ 2 C 1,O)tellurium(IV), bromo(3,5-dimethyl-2-nitro-phenyl-κ 2 C 1,O)tellurium(II) and bromo(3,5-dimethyl-2-nitroso-phenyl-κ 2 C 1,O)tellurium(II) Acta Crystallographica, Section C. 2003;59(10):o571–o574. doi: 10.1107/s0108270103017955. [DOI] [PubMed] [Google Scholar]
- 759.Krebs B, Büscher K. Dimere Halogenotellurate(IV): Darstellung und Kristallstruktur von [(C6 H5)4P]2Te2Br10 . Zeitschrift für anorganische und allgemeine Chemie. 1980;463(1):56–64. [Google Scholar]
- 760.Janickis V, Herberhold M, Necas M, Milius W. Synthesis and crystal structure of Bis(methyltriethylammonium) Hexabromotellurate(IV)-tris{dibromodiselenate(i)}, [NMeEt3]2 n[TeBr6(Se2Br2)3]n, containing a chain-polymeric mixed-valence bromotellurate(IV)-selenate(I) anion. Zeitschrift für anorganische und allgemeine Chemie. 2003;629(4):641–646. [Google Scholar]
- 761.Eveland JR, Whitmire KH. Synthesis and characterization of the carbide cubane cluster [Fe3(Co)9Te4(μ 3−CTeBr4 )] with an unusual tetrahedral CTe4 unit. Angewandte Chemie International Edition. 1997;36(11):1193–1194. [Google Scholar]
- 762.Menon SC, Singh HB, Patel RP, Das K, Butcher RJ. Synthesis and reactivity of chiral tellurium azomethines: pseudopolymorphism of [o-((((1S,2R)-2-hydroxy-2-phenyl-1-methylethyl)amino)-methinyl)phenyl] tellurium(IV) bromide. Organometallics. 1997;16(4):563–571. [Google Scholar]
- 763.Zukerman-Schpector J, Stefani HA, Silva DDO, et al. Dibromo[(Z)-2-bromo-2-(hydroxymethyl)-vinyl](n-butyl)tellurium(IV) Acta Crystallographica, Section C. 1998;54(12):2007–2009. [Google Scholar]
- 764.Chadha RK, Nguyen T. Structure of dibromo(2-methoxycyclohexyl)phenyltellurium. Acta Crystallographica, Section C. 1990;46(2):251–253. [Google Scholar]
- 765.Knobler C, McCullough JD. Crystal and molecular structure of 1-thia-4-telluracyclohexane 4,4-dibromide, C4 H8 STeBr2 . Inorganic Chemistry. 1972;11(12):3026–3029. [Google Scholar]
- 766.Dahan F, Lefebvre-Soubeyran O. Acta Crystallographica, Section B. 1976;32:2863. [Google Scholar]
- 767.Klapötke TM, Krumm B, Mayer P, Piotrowski H, Ruscitti OP. Chlorination and bromination of dialkyl tellurides. Zeitschrift für anorganische und allgemeine Chemie. 2002;628(1):229–234. [Google Scholar]
- 768.Reich O, Hasche S, Büscher K, Beckmann I, Krebs B. Neue Oxonium-bromochalkogenate(IV) - Darstellung, Struktur und Eigenschaften von [H3O][TeBr5] ⋅ 3C4H8O2 und [H3O]2[SeBr6] . Zeitschrift für anorganische und allgemeine Chemie. 1996;622(6):1011–1018. [Google Scholar]
- 769.Berg RW, Nielsen K. Acta Chemica Scandinavica, Series B. 1979;33:157. [Google Scholar]
- 770.Chauhan AKS, Kumar A, Srivastava RC, Butcher RJ. Synthesis and characterization of monomeric diorganotellurium dihalides: crystal and molecular structures of diphenacyltellurium dibromide and - diiodide. Journal of Organometallic Chemistry. 2002;658(1-2):169–175. [Google Scholar]
- 771.Hauge S, Janickis V, Marøy K. Reaction of TeBr4 with SbBr3 in the presence of [C6 H5(CH3)3 N]Br: crystal structures of [C6 H5(CH3)3N]2[Te2Br10] and [C6H5 (CH3)3 N][SbTeOBr6] . Acta Chemica Scandinavica. 1999;53(11):992–996. [Google Scholar]
- 772.Bakshi PK, Cameron TS, Ali MES, Malik MA, Smith BC. Reactions of trans-2-alkoxy-1-cycloalkyltellurium(IV) trihalides with N-substituted anilines: the X-ray crystal structure of p-N-ethylanilino(trans-2-ethoxy-1-cyclohexyl)tellurium(IV) dibromide . Inorganica Chimica Acta. 1993;204(1):27–33. [Google Scholar]
- 773.Dakternieks D, O'Connell J, Tiekink ERT. Crystal structure of dibromo[(1,1-dibromo-1-mesityl-λ 4-telluranyl)methyl]-mesityl-λ 4-tellurane, [MesTeBr2]2CH2 . Zeitschrift für Kristallographie: New Crystal Structures. 2000;215(1):87–88. [Google Scholar]
- 774.Lu W-M, Wang Y-P, Huang XJ, Sun JIA. Molecular structures of dibromo[(E)-2-bromo-2-phenylvinyl]-(phenyl)tellurium(IV) and dibromo [(Z)-2-bromo-2-phenyl-vinyl] (p-tulyl)tellurium (IV) hydrate methanolate. Chinese Journal of Chemistry. 2001;19(5):457–461. [Google Scholar]
- 775.Janickis V, Songstad J, Tornroos KW. Syntheses and crystal structure of bis (phenyltrimethyl ammonium) hexabromotellurate (IV)bis{dibromodiselenate(I)}, [C6H5(CH3)3N]2[TeBr6(Se2Br2)2] . Chemija. 2001;12(2):93–98. [Google Scholar]
- 776.Klapötke TM, Krumm B, Mayer P, Naumann D, Schwab I. Fluorinated tellurium(IV) azides and their precursors. Journal of Fluorine Chemistry. 2004;125(6):997–1005. [Google Scholar]
- 777.Baker L-J, Rickard CEF, Taylor MJ. Crystal structure determination and vibrational spectra of (t−BuNH3)2[TeBr6] and comparisons with other solids containing [TeCl6]2− or [TeBr6]2− ions. Polyhedron. 1995;14(3):401–405. [Google Scholar]
- 778.Devillanova FA, Deplano P, Isaia F, et al. Crystal structure and vibrational characterization of the reaction products of N-methylthiazolidine-2(3H)-selone (1) and N-methylbenzothiazole-2(3H)-selone (2) with Br2 . Polyhedron. 1998;17(2-3):305–312. [Google Scholar]
- 779.Krebs B, Schaffer A, Pohl S. Zeitschrift für Naturforschung, Section B. 1984;39:1633. [Google Scholar]
- 780.Takada H, Metzner P, Philouze C. First chiral selenium ylides used for asymmetric conversion of aldehydes into epoxides. Chemical Communications. 2001;(22):2350–2351. doi: 10.1039/b106063p. [DOI] [PubMed] [Google Scholar]
- 781.Berges P, Hinrichs W, Klar G. Journal of Chemical Research. 1986;362:3121. [Google Scholar]
- 782.Abriel W. Zeitschrift für Naturforschung, Section B. 1987;42:415. [Google Scholar]
- 783.Godfrey SM, Jackson SL, McAuliffe CA, Pritchard RG. Reaction of tertiary phosphine selenides, R3PSe (R = Me2N, Et2N or C6H11), with dibromine. The first reported examples of 1 : 1 addition. Journal of the Chemical Society, Dalton Transactions. 1998;(24):4201–4204. [Google Scholar]
- 784.Hammerschmidt A, Beckmann I, Läge M, Krebs B. A novel halogenochalcogeno(IV)acid: [H3O(Dibromo-benzo-15 -Krone-5)]2[SeBr6] . Zeitschrift für anorganische und allgemeine Chemie. 2005;631(2-3):393–396. [Google Scholar]
- 785.Hauge S, Maroy K, Odegard T. Acta Chemica Scandinavica, Series A. 1988;42:56. [Google Scholar]
- 786.Krebs B, Luhrs E, Ahlers F-P. Bromoselenates(II,IV), a novel type of mixed valence compounds. Angewandte Chemie International Edition. 1989;28(2):187–189. [Google Scholar]
- 787.Hauge S, Janickis V, Marøy K. Syntheses and crystal structures of salts of hexabromotetraselenate(I) and hexabromoselenate(IV)bis{dibromodiselenate(I)} . Acta Chemica Scandinavica. 1998;52(9):1104–1109. [Google Scholar]
- 788.Aragoni MC, Arca M, Demartin F, et al. Mechanistic aspects of the reaction between Br2 and chalcogenone donors (LE; E = S, Se): competitive formation of 10-E-3, T-shaped 1:1 molecular adducts, charge-transfer adducts, and [(LE)2]2+ dications. Chemistry - European Journal. 2001;7(14):3122–3133. doi: 10.1002/1521-3765(20010716)7:14<3122::aid-chem3122>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
- 789.Takanohashi Y, Tabata N, Tanase T, Akabori S. Bis(2-bromoethyl) selenium dibromide as the selenium-introducing reagent: one-pot preparation of 2,5-bis(alkoxymethyl)tetrahydroselenophenes by the cyclization of 1,5-hexadiene. Journal of Organometallic Chemistry. 1993;450(1-2):103–108. [Google Scholar]
- 790.McCullough JD, Hamburger G. The crystal structure of diphenylselenium dibromide. Journal of the American Chemical Society. 1941;63(3):803–807. [Google Scholar]
- 791.Williams DJ, Vanderveer D, Crouse BR, et al. Main Group Chemistry. 1997;2:61. [Google Scholar]
- 792.Jung A, Wolmershäuser G. Bromination of “poly(1,4-diselenobenzene)”. Zeitschrift für Naturforschung, Section B. 1997;52(3):345–350. [Google Scholar]
- 793.Hauge S, Janickis V, Marøy K. Crystal structures of phenyltrimethylammonium salts of tetrabromoselenate(II) bromide, [C6H5(CH3)3N]2[SeBr4] ⋅ [C6H5(CH3)3N] Br and a mixed tetra(bromo/chloro)selenate(II) Acta Chemica Scandinavica. 1998;52(4):441–444. [Google Scholar]
- 794.Battelle L, Knobler C, McCullough JD. Crystal and molecular structure of 1-thia-4-selenacyclohexane-4,4-dibromide, C4H8SSeBr2 . Inorganic Chemistry. 1967;6(5):958–962. [Google Scholar]
- 795.Tanohashi Y, Tabata N, Tanase T, Akabori S. Selenium transfer reagent: one-step alkoxyselenation of cyclohexene with bis(2-bromoethyl)selenium dibromide. Journal of the Chemical Society, Perkin Transactions 1. 1993:813–817. [Google Scholar]
- 796.Nakanishi W, Hayashi S. Inter-element linkage in 1,2- and 1,4-bis(arylselanyl)benzenes with halogens. Journal of Organometallic Chemistry. 2000;611(1-2):178–189. [Google Scholar]
- 797.Geiser U, Hau Wang H, Schlueter JA, et al. Synthesis, structure, and properties of the organic conductor (BEDT-TTF)2Br2SeCN. Inorganic Chemistry. 1994;33(22):5101–5107. [Google Scholar]
- 798.Miura M, Takanohashi Y, Habata Y, Akabori S. Reactivities of bis(2-bromoethyl)selenium dibromide and its related compounds: formation of hypervalent T-shaped coordinated selenium compounds by reaction with pyridine and its derivatives. Tetrahedron Letters. 1994;35(44):8213–8216. [Google Scholar]
- 799.Miura M, Takanohashi Y, Habata Y, Akabori S. New synthesis of hypervalent T-shaped coordination compounds of selenium by the reaction of bis(2-bromoethyl)selenium dibromide with pyridine and its derivatives. Journal of the Chemical Society, Perkin Transactions 1. 1995:1719–1724. [Google Scholar]
- 800.Arduengo AJ, Burgess EM. Tricoordinate hypervalent sulfur compounds. Journal of the American Chemical Society. 1977;99(7):2376–2378. [Google Scholar]
- 801.Hauge S, Vikane O. Acta Chemica Scandinavica, Series A. 1983;37:723. [Google Scholar]
- 802.Aragoni MC, Arca M, Blake AJ, et al. 1,2-Bis(3-methyl-imidazolin-2-ylium iodobromoselenanide)ethane: oxidative addition of IBr at the Se atom of a > C = Se group. Angewandte Chemie International Edition. 2001;40(22):4229–4232. doi: 10.1002/1521-3773(20011119)40:22<4229::AID-ANIE4229>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- 803.Ledesma GN, Lang ES, Abram U. 2,4,6-Triphenylphenyltellurium(IV) triiodide - supramolecular self-assembling in organotellurium triiodides. Journal of Organometallic Chemistry. 2004;689(12):2092–2095. [Google Scholar]
- 804.McCullough JD. Crystal and molecular structure of dibenzotellurophene diiodide C12H8Tel2 . Inorganic Chemistry. 1975;14(5):1142–1146. [Google Scholar]
- 805.Singh HB, McWhinnie WR, Hamor TA, Jones RH. Synthesis and chemistry of 1,3-dihydrotellurolo[3,4-b]quinoxaline and derivatives: crystal and molecular structure of 1,3-dihydro-2,2-di-iodo-2λ 4-tellurolo[3,4-b]quinoxaline-2,3-bis(iodomethyl)quinoxaline (1 : 1) Journal of the Chemical Society, Dalton Transactions. 1984;(1):23–28. [Google Scholar]
- 806.Alcock NW, Harrison WD. Secondary bonding. Part 12. Aryltellurium iodides: crystal and molecular structures of cis- and trans-phenyltellurium(IV) tri-iodide and two modifications of diphenyltellurium(IV) di-iodide. Journal of the Chemical Society, Dalton Transactions. 1984;(5):869–875. [Google Scholar]
- 807.Chao GY, McCullough JD. The crystal structure of di-p-chlorodiphenyltellurium diiodide. Acta Crystallographica. 1962;15(9):887–893. [Google Scholar]
- 808.McCullough JD, Knobler C, Ziolo RF. Crystal and molecular structure of the β modification of 1,1-diiodo-3,4-benzo-1-telluracyclopentane, β − C8H8Tel2. Comparative study of secondary bonding systems and colors in organotellurium iodides. Inorganic Chemistry. 1985;24(12):1814–1818. [Google Scholar]
- 809.Knobler C, Ziolo RF. Organotellurium diiodides. The molecular structure of the α modification of I,I-Diiodo-3,4-benzo-I-telluracyclopentane, α −C8H8Tel2 . Journal of Organometallic Chemistry. 1979;178(2):423–431. [Google Scholar]
- 810.Chan LYY, Einstein FWB. Journal of the Chemical Society, Dalton Transactions. 1972;316 [Google Scholar]
- 811.L'Haridon P, Jedrzejczak H, Szwabski S. Acta Crystallographica, Section B. 1979;35:1843. [Google Scholar]
- 812.Pritzkow H. Crystal and molecular structure of dimethyltellurium tetraiodide, (CH3)2Tel4 . Inorganic Chemistry. 1979;18(2):311–313. [Google Scholar]
- 813.Srivastava PC, Bajpai S, Bajpai S, et al. Telluranes: potential synthons for charge-transfer complexes (involving hypervalent Te-I bonds) and serendipitous synthesis of the first triphenyl methyl phosphonium salts containing [C4H8Tel4]2− and[Tel6]2− anions. Journal of Organometallic Chemistry. 2004;689(1):194–202. [Google Scholar]
- 814.Hesford MJ, Hill NJ, Levason W, Reid G. Synthesis and properties of the ditelluroethers m- and p-C6H4(CH2TeMe)2 and their Te(IV) derivatives: crystal structures of PhTeI2(CH2)3Tel2Ph, m-C6H4 (CH2Tel2Me)2 and p-C6H4(CH2Tel2Me)2 . Journal of Organometallic Chemistry. 2004;689(6):1006–1013. [Google Scholar]
- 815.Jones PG, Jeske J. private communication, 2004.
- 816.Kumar RK, Aravamudan G, Sivakumar K, Fun H-K. Tetraethylammonium (N,N-diethyldithio-carbamato-S,S ′)tetraiodotellurate(IV) Acta Crystallographica, Section C. 1999;55(7):1121–1123. [Google Scholar]
- 817.Hu N-H, Jin Z-S, Li Z-S. Structure of hexamethylenetetratellurafulvalene diiodide. Acta Crystallographica, Section C. 1991;47(9):1858–1860. [Google Scholar]
- 818.Einstein F, Trotter J, Williston CS. The crystal structure of β-dimethyltellurium di-iodide. Journal of the Chemical Society - A. 1967:2018–2023. [Google Scholar]
- 819.Farran J, Alvarez-Larena A, Capparelli MV, Piniella JF, Germain G, Torres-Castellanos L. Two polymorphs of bis(4-methoxyphenyl)-tellurium(IV) diiodide. Acta Crystallographica, Section C. 1998;54(7):995–1000. [Google Scholar]
- 820.Hesford MJ, Levason W, Matthews ML, Orchard SD, Reid G. Dalton Transactions. 2003:2434. [Google Scholar]
- 821.Hope H, Knobler C, McCullough JD. Crystal and molecular structure of 1-oxa-4-telluracyclohexane 4,4-diiodide, C4H8OTeI2 . Inorganic Chemistry. 1973;12(11):2665–2669. [Google Scholar]
- 822.McCullough JD. Crystal and molecular structure of phenoxatellurin 10,10-diiodide, C12H8OTeI2 . Inorganic Chemistry. 1973;12(11):2669–2673. [Google Scholar]
- 823.Srivastava PC, Bajpai S, Lath R, Butcher RJ. Secondary bonds induced supramolecular assemblies in the crystals of 1,1,2,3,4,5-hexahydro-1,1-diiodotellurophene; 1,1,2,3,4,5,6-heptahydro-1,1-diiodotellurane and 1,3-dihydro-2λ 4-benzotellurole-2,2-diyl diiodide. Journal of Organometallic Chemistry. 2000;608(1-2):96–105. [Google Scholar]
- 824.Knobler C, McCullough JD, Hope H. Crystal and molecular structure of 1-thia-4-telluracyclohexane 4,4-diiodide, C4H8STeI2 . Inorganic Chemistry. 1970;9(4):797–804. [Google Scholar]
- 825.Al-Rubaie AZ, Uemura S, Masuda H. New cyclic tellurides. Synthesis, reaction and ligand properties of 2,2,6,6-tetramethyl-1-oxa-4-tellura-2,6-disilacyclohexane (C6H16OSi2Te). X-Ray structure determination of C6H16OSi2Tel2 . Journal of Organometallic Chemistry. 1991;410(3):309–320. [Google Scholar]
- 826.du Mont W-W, Meyer H-U, Kubiniok S, Pohl S, Saak W. Chemische Berichte. 1992;125:761. [Google Scholar]
- 827.Srivastava PC, Schmidt H-G, Roesky HW. Zeitschrift für Naturforschung, Section B. 1995;50:695. [Google Scholar]
- 828.Kuhn N, Kratz T, Henkel G. (1,3-Diethyl-1,3-dihydro-4,5-dimethyl-2H-imidazol-2-yliden)-diiodtellur(II) [1] Zeitschrift für Naturforschung, Section B. 1996;51(2):295–297. [Google Scholar]
- 829.Kumar RK, Aravamudan G, Udupa MR, Seshasayee M, Selvam P, Yvon K. A novel mixed ligand Te(IV) complex comprising three halides and a dithiocarbamate; synthesis and crystal structure of triiododiethyldithiocarbamatotellurium(IV), Te{(C2H5)2NCS2}I3 . Polyhedron. 1996;15(9):1453–1458. [Google Scholar]
- 830.Kuhn N, Kratz T, Henkel G. Chemische Berichte. 1994;127:849. [Google Scholar]
- 831.Maartmann-Moe K, Songstad J. Acta Chemica Scandinavica, Series A. 1982;36:829. [Google Scholar]
- 832.Aragoni MC, Arca M, Demartin F, et al. First ICN adduct with a selenium donor (R = Se): is it an ionic [RSeCN]+I− or a “T-shaped” R(I)SeCN hypervalent compound? European Journal of Inorganic Chemistry. 2004;2004(11):2363–2368. [Google Scholar]





























