Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Jan;33(1):58–63. doi: 10.1128/jcm.33.1.58-63.1995

Comparison of characteristics of Q beta replicase-amplified assay with competitive PCR assay for Chlamydia trachomatis.

Q An 1, J Liu 1, W O'Brien 1, G Radcliffe 1, D Buxton 1, S Popoff 1, W King 1, M Vera-Garcia 1, L Lu 1, J Shah 1
PMCID: PMC227880  PMID: 7699067

Abstract

In order to study infections due to Chlamydia trachomatis, we have compared semiquantitative PCR and Q beta replicase-amplified assays for detection of this organism. The PCR assay was directed against the C. trachomatis 16S rRNA gene. Quantitation was accomplished by adding known amounts of a plasmid containing a truncated segment of the 16S rRNA gene target to chlamydia-containing samples and then amplifying with a common primer set. The Q beta replicase assay consisted of reversible target capture of C. trachomatis 16S rRNA, which was followed by amplification of an RNA detector probe in the presence of the enzyme Q beta replicase. In a clinical matrix, the lower limit of detection of both the PCR and Q beta replicase assays was five elementary bodies. The Q beta replicase and PCR assays were quantitative over 10,000- and 1,000-fold ranges of organisms, respectively. Analysis of the effects of endocervical matrix on amplification was accomplished by examining 94 endocervical specimens by each technique. Both assays detected five of six culture-confirmed specimens as well as three culture-negative specimens. PCR inhibitors were detected in 13 specimens. The Q beta replicase assay, in contrast, showed no evidence of sample inhibition. The Q beta replicase and PCR assays should allow quantitative investigation of infections due to C. trachomatis. In addition, because it targets highly labile RNA, the Q beta replicase assay may facilitate investigations into the role of active persisting infection in culture-negative inflammatory conditions.

Full Text

The Full Text of this article is available as a PDF (271.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An Q., Radcliffe G., Vassallo R., Buxton D., O'Brien W. J., Pelletier D. A., Weisburg W. G., Klinger J. D., Olive D. M. Infection with a plasmid-free variant Chlamydia related to Chlamydia trachomatis identified by using multiple assays for nucleic acid detection. J Clin Microbiol. 1992 Nov;30(11):2814–2821. doi: 10.1128/jcm.30.11.2814-2821.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnes R. C. Laboratory diagnosis of human chlamydial infections. Clin Microbiol Rev. 1989 Apr;2(2):119–136. doi: 10.1128/cmr.2.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barns S. M., Lane D. J., Sogin M. L., Bibeau C., Weisburg W. G. Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol. 1991 Apr;173(7):2250–2255. doi: 10.1128/jb.173.7.2250-2255.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bass C. A., Jungkind D. L., Silverman N. S., Bondi J. M. Clinical evaluation of a new polymerase chain reaction assay for detection of Chlamydia trachomatis in endocervical specimens. J Clin Microbiol. 1993 Oct;31(10):2648–2653. doi: 10.1128/jcm.31.10.2648-2653.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bauwens J. E., Clark A. M., Stamm W. E. Diagnosis of Chlamydia trachomatis endocervical infections by a commercial polymerase chain reaction assay. J Clin Microbiol. 1993 Nov;31(11):3023–3027. doi: 10.1128/jcm.31.11.3023-3027.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beatty W. L., Byrne G. I., Morrison R. P. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3998–4002. doi: 10.1073/pnas.90.9.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cahill P., Foster K., Mahan D. E. Polymerase chain reaction and Q beta replicase amplification. Clin Chem. 1991 Sep;37(9):1482–1485. [PubMed] [Google Scholar]
  8. Holland S. M., Hudson A. P., Bobo L., Whittum-Hudson J. A., Viscidi R. P., Quinn T. C., Taylor H. R. Demonstration of chlamydial RNA and DNA during a culture-negative state. Infect Immun. 1992 May;60(5):2040–2047. doi: 10.1128/iai.60.5.2040-2047.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hunsaker W. R., Badri H., Lombardo M., Collins M. L. Nucleic acid hybridization assays employing dA-tailed capture probes. II. Advanced multiple capture methods. Anal Biochem. 1989 Sep;181(2):360–370. doi: 10.1016/0003-2697(89)90256-x. [DOI] [PubMed] [Google Scholar]
  10. Jaschek G., Gaydos C. A., Welsh L. E., Quinn T. C. Direct detection of Chlamydia trachomatis in urine specimens from symptomatic and asymptomatic men by using a rapid polymerase chain reaction assay. J Clin Microbiol. 1993 May;31(5):1209–1212. doi: 10.1128/jcm.31.5.1209-1212.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kwok S., Higuchi R. Avoiding false positives with PCR. Nature. 1989 May 18;339(6221):237–238. doi: 10.1038/339237a0. [DOI] [PubMed] [Google Scholar]
  12. Lomeli H., Tyagi S., Pritchard C. G., Lizardi P. M., Kramer F. R. Quantitative assays based on the use of replicatable hybridization probes. Clin Chem. 1989 Sep;35(9):1826–1831. [PubMed] [Google Scholar]
  13. Morrissey D. V., Collins M. L. Nucleic acid hybridization assays employing dA-tailed capture probes. Single capture methods. Mol Cell Probes. 1989 Jun;3(2):189–207. doi: 10.1016/0890-8508(89)90029-7. [DOI] [PubMed] [Google Scholar]
  14. Morrissey D. V., Lombardo M., Eldredge J. K., Kearney K. R., Groody E. P., Collins M. L. Nucleic acid hybridization assays employing dA-tailed capture probes. I. Multiple capture methods. Anal Biochem. 1989 Sep;181(2):345–359. doi: 10.1016/0003-2697(89)90255-8. [DOI] [PubMed] [Google Scholar]
  15. Shah J. S., Liu J., Smith J., Popoff S., Radcliffe G., O'Brien W. J., Serpe G., Olive D. M., King W. Novel, ultrasensitive, Q-beta replicase-amplified hybridization assay for detection of Chlamydia trachomatis. J Clin Microbiol. 1994 Nov;32(11):2718–2724. doi: 10.1128/jcm.32.11.2718-2724.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Siebert P. D., Larrick J. W. PCR MIMICS: competitive DNA fragments for use as internal standards in quantitative PCR. Biotechniques. 1993 Feb;14(2):244–249. [PubMed] [Google Scholar]
  17. Stamm W. E. Diagnosis of Chlamydia trachomatis genitourinary infections. Ann Intern Med. 1988 May;108(5):710–717. doi: 10.7326/0003-4819-108-5-710. [DOI] [PubMed] [Google Scholar]
  18. Taylor H. R., Rapoza P. A., West S., Johnson S., Munoz B., Katala S., Mmbaga B. B. The epidemiology of infection in trachoma. Invest Ophthalmol Vis Sci. 1989 Aug;30(8):1823–1833. [PubMed] [Google Scholar]
  19. Taylor H. R., Siler J. A., Mkocha H. A., Muñoz B., Velez V., Dejong L., West S. Longitudinal study of the microbiology of endemic trachoma. J Clin Microbiol. 1991 Aug;29(8):1593–1595. doi: 10.1128/jcm.29.8.1593-1595.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Taylor H. R., Young E., MacDonald A. B., Schachter J., Prendergast R. A. Oral immunization against chlamydial eye infection. Invest Ophthalmol Vis Sci. 1987 Feb;28(2):249–258. [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES