Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Jan;33(1):76–78. doi: 10.1128/jcm.33.1.76-78.1995

Characterization of Neisseria elongata subsp. glycolytica isolates obtained from human wound specimens and blood cultures.

B M Andersen 1, R S Weyant 1, A G Steigerwalt 1, C W Moss 1, D G Hollis 1, R E Weaver 1, D Ashford 1, D J Brenner 1
PMCID: PMC227883  PMID: 7699070

Abstract

Four slightly yellow-pigmented, alpha-hemolytic, gram-negative coccobacilli, three from wound specimens and one from multiple blood cultures of a patient with endocarditis, were identified as Neisseria elongata subsp. glycolytica on the basis of their overall biochemical and genetic similarities to this subspecies. These strains resembled N. elongata in their guanine-plus-cytosine contents (55.6 to 57.1 mol%) and in their overall cellular fatty acid profiles, which are characterized by large amounts of 16:0, 16:1 omega 7c, and 18:1 omega 7c fatty acids. Their identities were confirmed by species-level DNA relatedness (hydroxyapatite method) to the type strains of all three N. elongata subspecies. The biochemical profiles and cultural characteristics of these strains resembled those of the type strain of N. elongata subsp. glycolytica except for the production of a weak yellow growth pigment and alpha-hemolysis on sheep blood agar. They differed from N elongata subsp. elongata by the production of catalase, by the production of alpha-hemolysis on sheep blood agar, and by acid production from D-glucose. They differed from N. elongata subsp. nitroreducens by the production of catalase and an inability to reduce nitrate. These studies suggest a pathogenic potential for N. elongata subsp. glycolytica, usually considered to be a transient colonizer in humans.

Full Text

The Full Text of this article is available as a PDF (168.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger U., Falsen E. Uber die Artenverteilung von Moraxella und moraxella-ähnlichen Keimen im Nasopharynx gesunder Erwachsener. Med Microbiol Immunol. 1976 Dec 1;162(3-4):239–249. doi: 10.1007/BF02121002. [DOI] [PubMed] [Google Scholar]
  2. Bovre K., Froholm L. O., Henriksen S. D., Holten E. Relationship of Neisseria elongata subsp. Glycolytica to other members of the family Neisseriaceae. Acta Pathol Microbiol Scand B. 1977 Feb;85B(1):18–26. doi: 10.1111/j.1699-0463.1977.tb01670.x. [DOI] [PubMed] [Google Scholar]
  3. Bovre K., Fuglesang J. E., Henriksen S. D. Neisseria elongata. Presentation of new isolates. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(6):919–922. doi: 10.1111/j.0365-5563.1973.tb00020.x. [DOI] [PubMed] [Google Scholar]
  4. Bovre K., Hagen N., Berdal B. P., Jantzen E. Oxidase positive rods from cases of suspected gonorrhoea. A comparison of conventional, gas chromatographic and genetic methods of identification. Acta Pathol Microbiol Scand B. 1977 Feb;85B(1):27–37. [PubMed] [Google Scholar]
  5. Bovre K., Holten E. Neisseria elongata sp.nov., a rod-shaped member of the genus Neisseria. Re-evaluation of cell shape as a criterion in classification. J Gen Microbiol. 1970 Jan;60(1):67–75. doi: 10.1099/00221287-60-1-67. [DOI] [PubMed] [Google Scholar]
  6. Brenner D. J., McWhorter A. C., Knutson J. K., Steigerwalt A. G. Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J Clin Microbiol. 1982 Jun;15(6):1133–1140. doi: 10.1128/jcm.15.6.1133-1140.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grant P. E., Brenner D. J., Steigerwalt A. G., Hollis D. G., Weaver R. E. Neisseria elongata subsp. nitroreducens subsp. nov., formerly CDC group M-6, a gram-negative bacterium associated with endocarditis. J Clin Microbiol. 1990 Dec;28(12):2591–2596. doi: 10.1128/jcm.28.12.2591-2596.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henriksen S. D., Fuglesang J. E. Antagonistic action of alpha haemolytic streptococci on Neisseria elongata. Acta Pathol Microbiol Scand B Microbiol Immunol. 1973 Feb;81(1):102–104. doi: 10.1111/j.1699-0463.1973.tb02192.x. [DOI] [PubMed] [Google Scholar]
  9. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  10. Miller K., Hansen W., Labbé M., Crokaert F., Yourassowsky E., Hubert T. Isolation of Neisseria elongata and of Capnocytophaga ochracea from vaginal specimens. J Infect. 1985 Mar;10(2):174–175. doi: 10.1016/s0163-4453(85)91690-1. [DOI] [PubMed] [Google Scholar]
  11. Moss C. W., Wallace P. L., Hollis D. G., Weaver R. E. Cultural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis. J Clin Microbiol. 1988 Mar;26(3):484–492. doi: 10.1128/jcm.26.3.484-492.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rarick H. R., Riley P. S., Martin R. Carbon substrate utilization studies of some cultures of Alcaligenes denitrificans, Alcaligenes faecalis, and Alcaligenes odorans isolated from clinical specimens. J Clin Microbiol. 1978 Sep;8(3):313–319. doi: 10.1128/jcm.8.3.313-319.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES