Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Feb;33(2):292–297. doi: 10.1128/jcm.33.2.292-297.1995

Human cord blood mononuclear cells are preferentially infected by non-syncytium-inducing, macrophage-tropic human immunodeficiency virus type 1 isolates.

P P Reinhardt 1, B Reinhardt 1, J L Lathey 1, S A Spector 1
PMCID: PMC227935  PMID: 7714181

Abstract

Identification of the factors which impact on the transmission of human immunodeficiency virus type 1 (HIV-1) from an infected mother to her infant is essential for the development of effective strategies to prevent perinatal HIV-1 infection. The current study was designed to determine if unstimulated human neonatal cord blood mononuclear cells (CBMC) differ from adult peripheral blood mononuclear cells (PBMC) in susceptibility to HIV-1 infection. Both cell populations were challenged with two laboratory and two clinical HIV-1 isolates with different phenotypic properties. Infection was evaluated by quantitation of p24 antigen production and p24 antigen expression by an enzyme immunoassay and immunofluorescence, respectively. T-cell markers were determined by flow cytometry. Unstimulated CBMC were preferentially infected by macrophage-tropic, non-syncytium-inducing (non-SI) laboratory and clinical isolates, whereas PBMC were more susceptible to T-lymphotropic, SI HIV-1 strains. The macrophage-tropic strain HIV-1Ba-L replicated to 100-fold higher titers in CBMC than a similar inoculum of the SI isolate HIV-1LAI. The opposite occurred in unstimulated PBMC, which replicated HIVLAI to eightfold higher titers than the macrophage-tropic isolate. These findings indicate that a selection of viral phenotype may occur with unstimulated CBMC displaying a predominant susceptibility to infection by macrophage-tropic, non-SI HIV-1 strains and that this selection may influence mother-infant transmission of HIV-1.

Full Text

The Full Text of this article is available as a PDF (321.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Devash Y., Calvelli T. A., Wood D. G., Reagan K. J., Rubinstein A. Vertical transmission of human immunodeficiency virus is correlated with the absence of high-affinity/avidity maternal antibodies to the gp120 principal neutralizing domain. Proc Natl Acad Sci U S A. 1990 May;87(9):3445–3449. doi: 10.1073/pnas.87.9.3445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ehrnst A., Lindgren S., Dictor M., Johansson B., Sönnerborg A., Czajkowski J., Sundin G., Bohlin A. B. HIV in pregnant women and their offspring: evidence for late transmission. Lancet. 1991 Jul 27;338(8761):203–207. doi: 10.1016/0140-6736(91)90347-r. [DOI] [PubMed] [Google Scholar]
  3. Ho W. Z., Lioy J., Song L., Cutilli J. R., Polin R. A., Douglas S. D. Infection of cord blood monocyte-derived macrophages with human immunodeficiency virus type 1. J Virol. 1992 Jan;66(1):573–579. doi: 10.1128/jvi.66.1.573-579.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hollinger F. B., Bremer J. W., Myers L. E., Gold J. W., McQuay L. Standardization of sensitive human immunodeficiency virus coculture procedures and establishment of a multicenter quality assurance program for the AIDS Clinical Trials Group. The NIH/NIAID/DAIDS/ACTG Virology Laboratories. J Clin Microbiol. 1992 Jul;30(7):1787–1794. doi: 10.1128/jcm.30.7.1787-1794.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kornbluth R. S., Oh P. S., Munis J. R., Cleveland P. H., Richman D. D. Interferons and bacterial lipopolysaccharide protect macrophages from productive infection by human immunodeficiency virus in vitro. J Exp Med. 1989 Mar 1;169(3):1137–1151. doi: 10.1084/jem.169.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lathey J. L., Spector D. H., Spector S. A. Human cytomegalovirus-mediated enhancement of human immunodeficiency virus type-1 production in monocyte-derived macrophages. Virology. 1994 Feb 15;199(1):98–104. doi: 10.1006/viro.1994.1101. [DOI] [PubMed] [Google Scholar]
  7. Lewis D. B., Yu C. C., Meyer J., English B. K., Kahn S. J., Wilson C. B. Cellular and molecular mechanisms for reduced interleukin 4 and interferon-gamma production by neonatal T cells. J Clin Invest. 1991 Jan;87(1):194–202. doi: 10.1172/JCI114970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ogino M. T., Dankner W. M., Spector S. A. Development and significance of zidovudine resistance in children infected with human immunodeficiency virus. J Pediatr. 1993 Jul;123(1):1–8. doi: 10.1016/s0022-3476(05)81529-x. [DOI] [PubMed] [Google Scholar]
  9. Pomerantz R. J., de la Monte S. M., Donegan S. P., Rota T. R., Vogt M. W., Craven D. E., Hirsch M. S. Human immunodeficiency virus (HIV) infection of the uterine cervix. Ann Intern Med. 1988 Mar;108(3):321–327. doi: 10.7326/0003-4819-108-3-321. [DOI] [PubMed] [Google Scholar]
  10. Rich E. A., Chen I. S., Zack J. A., Leonard M. L., O'Brien W. A. Increased susceptibility of differentiated mononuclear phagocytes to productive infection with human immunodeficiency virus-1 (HIV-1). J Clin Invest. 1992 Jan;89(1):176–183. doi: 10.1172/JCI115559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Robertson C. A., Mok J. Y., Froebel K. S., Simmonds P., Burns S. M., Marsden H. S., Graham S. Maternal antibodies to gp120 V3 sequence do not correlate with protection against vertical transmission of human immunodeficiency virus. J Infect Dis. 1992 Oct;166(4):704–709. doi: 10.1093/infdis/166.4.704. [DOI] [PubMed] [Google Scholar]
  12. Rossi P., Moschese V., Broliden P. A., Fundaró C., Quinti I., Plebani A., Giaquinto C., Tovo P. A., Ljunggren K., Rosen J. Presence of maternal antibodies to human immunodeficiency virus 1 envelope glycoprotein gp120 epitopes correlates with the uninfected status of children born to seropositive mothers. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8055–8058. doi: 10.1073/pnas.86.20.8055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ryder R. W., Nsa W., Hassig S. E., Behets F., Rayfield M., Ekungola B., Nelson A. M., Mulenda U., Francis H., Mwandagalirwa K. Perinatal transmission of the human immunodeficiency virus type 1 to infants of seropositive women in Zaire. N Engl J Med. 1989 Jun 22;320(25):1637–1642. doi: 10.1056/NEJM198906223202501. [DOI] [PubMed] [Google Scholar]
  14. Scarlatti G., Hodara V., Rossi P., Muggiasca L., Bucceri A., Albert J., Fenyö E. M. Transmission of human immunodeficiency virus type 1 (HIV-1) from mother to child correlates with viral phenotype. Virology. 1993 Dec;197(2):624–629. doi: 10.1006/viro.1993.1637. [DOI] [PubMed] [Google Scholar]
  15. Schnittman S. M., Lane H. C., Greenhouse J., Justement J. S., Baseler M., Fauci A. S. Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: evidence for a role in the selective T-cell functional defects observed in infected individuals. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6058–6062. doi: 10.1073/pnas.87.16.6058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schuitemaker H., Kootstra N. A., Koppelman M. H., Bruisten S. M., Huisman H. G., Tersmette M., Miedema F. Proliferation-dependent HIV-1 infection of monocytes occurs during differentiation into macrophages. J Clin Invest. 1992 Apr;89(4):1154–1160. doi: 10.1172/JCI115697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spencer L. T., Ogino M. T., Dankner W. M., Spector S. A. Clinical significance of human immunodeficiency virus type 1 phenotypes in infected children. J Infect Dis. 1994 Mar;169(3):491–495. doi: 10.1093/infdis/169.3.491. [DOI] [PubMed] [Google Scholar]
  18. Sperduto A. R., Bryson Y. J., Chen I. S. Increased susceptibility of neonatal monocyte/macrophages to HIV-1 infection. AIDS Res Hum Retroviruses. 1993 Dec;9(12):1277–1285. doi: 10.1089/aid.1993.9.1277. [DOI] [PubMed] [Google Scholar]
  19. Ugen K. E., Goedert J. J., Boyer J., Refaeli Y., Frank I., Williams W. V., Willoughby A., Landesman S., Mendez H., Rubinstein A. Vertical transmission of human immunodeficiency virus (HIV) infection. Reactivity of maternal sera with glycoprotein 120 and 41 peptides from HIV type 1. J Clin Invest. 1992 Jun;89(6):1923–1930. doi: 10.1172/JCI115798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Valentin A., Matsuda S., Asjo B. Characterization of the in vitro maturation of monocytes and the susceptibility to HIV infection. AIDS Res Hum Retroviruses. 1990 Aug;6(8):977–978. doi: 10.1089/aid.1990.6.977. [DOI] [PubMed] [Google Scholar]
  21. Wolinsky S. M., Wike C. M., Korber B. T., Hutto C., Parks W. P., Rosenblum L. L., Kunstman K. J., Furtado M. R., Muñoz J. L. Selective transmission of human immunodeficiency virus type-1 variants from mothers to infants. Science. 1992 Feb 28;255(5048):1134–1137. doi: 10.1126/science.1546316. [DOI] [PubMed] [Google Scholar]
  22. Zhu T., Mo H., Wang N., Nam D. S., Cao Y., Koup R. A., Ho D. D. Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science. 1993 Aug 27;261(5125):1179–1181. doi: 10.1126/science.8356453. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES