Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Feb;33(2):352–355. doi: 10.1128/jcm.33.2.352-355.1995

Reverse transcriptase sequence of paired isolates of cerebrospinal fluid and blood from patients infected with human immunodeficiency virus type 1 during zidovudine treatment.

M Di Stefano 1, F Sabri 1, T Leitner 1, B Svennerholm 1, L Hagberg 1, G Norkrans 1, F Chiodi 1
PMCID: PMC227947  PMID: 7536214

Abstract

Human immunodeficiency virus type 1 (HIV-1) isolates obtained from the blood of patients undergoing treatment with 3'-azido-3'-deoxythymidine (zidovudine [AZT]) show a decreased sensitivity to the drug in vitro. The aim of the present study was to determine if HIV-1 variants resistant to AZT are present also in the brain compartment. We selected sequential HIV-1 isolates from the blood and the cerebrospinal fluid (CSF) of six patients with HIV-1 infection undergoing AZT therapy for a time varying between 1 and 3 years. The isolates were used to infect peripheral blood mononuclear cell cultures which were used to prepare viral DNA. The viral DNA was amplified by PCR and then directly sequenced. Analysis of the reverse transcriptase (RT) sequence of the isolates from the CSF during therapy demonstrated that CSF-resistant isolates are characterized by the same mutations documented in resistant isolates from the blood compartment. Isolates obtained from one patient (patient 3) showed the same two mutations (codons 70 and 215) in blood and CSF, whereas isolates obtained from an additional four patients presented a different pattern of mutations in the two compartments. We also analyzed the degree of amino acid homology between RT sequences from blood and CSF isolates in patients before and during AZT treatment. The percentages of amino acid variations were approximately equal when isolates from the same or different compartments were considered. Excluding the codons involved in AZT resistance, the time point of sampling did not affect RT variations during therapy significantly.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (164.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert J., Fenyö E. M. Simple, sensitive, and specific detection of human immunodeficiency virus type 1 in clinical specimens by polymerase chain reaction with nested primers. J Clin Microbiol. 1990 Jul;28(7):1560–1564. doi: 10.1128/jcm.28.7.1560-1564.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albert J., Gaines H., Sönnerborg A., Nyström G., Pehrson P. O., Chiodi F., von Sydow M., Moberg L., Lidman K., Christensson B. Isolation of human immunodeficiency virus (HIV) from plasma during primary HIV infection. J Med Virol. 1987 Sep;23(1):67–73. doi: 10.1002/jmv.1890230108. [DOI] [PubMed] [Google Scholar]
  3. Boucher C. A., Tersmette M., Lange J. M., Kellam P., de Goede R. E., Mulder J. W., Darby G., Goudsmit J., Larder B. A. Zidovudine sensitivity of human immunodeficiency viruses from high-risk, symptom-free individuals during therapy. Lancet. 1990 Sep 8;336(8715):585–590. doi: 10.1016/0140-6736(90)93391-2. [DOI] [PubMed] [Google Scholar]
  4. Burger D. M., Kraaijeveld C. L., Meenhorst P. L., Mulder J. W., Koks C. H., Bult A., Beijnen J. H. Penetration of zidovudine into the cerebrospinal fluid of patients infected with HIV. AIDS. 1993 Dec;7(12):1581–1587. doi: 10.1097/00002030-199312000-00006. [DOI] [PubMed] [Google Scholar]
  5. Cheng-Mayer C., Rutka J. T., Rosenblum M. L., McHugh T., Stites D. P., Levy J. A. Human immunodeficiency virus can productively infect cultured human glial cells. Proc Natl Acad Sci U S A. 1987 May;84(10):3526–3530. doi: 10.1073/pnas.84.10.3526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chiodi F., Fuerstenberg S., Gidlund M., Asjö B., Fenyö E. M. Infection of brain-derived cells with the human immunodeficiency virus. J Virol. 1987 Apr;61(4):1244–1247. doi: 10.1128/jvi.61.4.1244-1247.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chiodi F., Keys B., Albert J., Hagberg L., Lundeberg J., Uhlén M., Fenyö E. M., Norkrans G. Human immunodeficiency virus type 1 is present in the cerebrospinal fluid of a majority of infected individuals. J Clin Microbiol. 1992 Jul;30(7):1768–1771. doi: 10.1128/jcm.30.7.1768-1771.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jordan C. A., Watkins B. A., Kufta C., Dubois-Dalcq M. Infection of brain microglial cells by human immunodeficiency virus type 1 is CD4 dependent. J Virol. 1991 Feb;65(2):736–742. doi: 10.1128/jvi.65.2.736-742.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keys B., Karis J., Fadeel B., Valentin A., Norkrans G., Hagberg L., Chiodi F. V3 sequences of paired HIV-1 isolates from blood and cerebrospinal fluid cluster according to host and show variation related to the clinical stage of disease. Virology. 1993 Oct;196(2):475–483. doi: 10.1006/viro.1993.1503. [DOI] [PubMed] [Google Scholar]
  11. Klecker R. W., Jr, Collins J. M., Yarchoan R., Thomas R., Jenkins J. F., Broder S., Myers C. E. Plasma and cerebrospinal fluid pharmacokinetics of 3'-azido-3'-deoxythymidine: a novel pyrimidine analog with potential application for the treatment of patients with AIDS and related diseases. Clin Pharmacol Ther. 1987 Apr;41(4):407–412. doi: 10.1038/clpt.1987.49. [DOI] [PubMed] [Google Scholar]
  12. Koenig S., Gendelman H. E., Orenstein J. M., Dal Canto M. C., Pezeshkpour G. H., Yungbluth M., Janotta F., Aksamit A., Martin M. A., Fauci A. S. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science. 1986 Sep 5;233(4768):1089–1093. doi: 10.1126/science.3016903. [DOI] [PubMed] [Google Scholar]
  13. Koot M., Vos A. H., Keet R. P., de Goede R. E., Dercksen M. W., Terpstra F. G., Coutinho R. A., Miedema F., Tersmette M. HIV-1 biological phenotype in long-term infected individuals evaluated with an MT-2 cocultivation assay. AIDS. 1992 Jan;6(1):49–54. doi: 10.1097/00002030-199201000-00006. [DOI] [PubMed] [Google Scholar]
  14. Koyanagi Y., Miles S., Mitsuyasu R. T., Merrill J. E., Vinters H. V., Chen I. S. Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science. 1987 May 15;236(4803):819–822. doi: 10.1126/science.3646751. [DOI] [PubMed] [Google Scholar]
  15. Land S., Terloar G., McPhee D., Birch C., Doherty R., Cooper D., Gust I. Decreased in vitro susceptibility to zidovudine of HIV isolates obtained from patients with AIDS. J Infect Dis. 1990 Feb;161(2):326–329. doi: 10.1093/infdis/161.2.326. [DOI] [PubMed] [Google Scholar]
  16. Larder B. A., Darby G., Richman D. D. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science. 1989 Mar 31;243(4899):1731–1734. doi: 10.1126/science.2467383. [DOI] [PubMed] [Google Scholar]
  17. Larder B. A., Kemp S. D. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science. 1989 Dec 1;246(4934):1155–1158. doi: 10.1126/science.2479983. [DOI] [PubMed] [Google Scholar]
  18. Larder B. A., Purifoy D. J., Powell K. L., Darby G. Site-specific mutagenesis of AIDS virus reverse transcriptase. 1987 Jun 25-Jul 1Nature. 327(6124):716–717. doi: 10.1038/327716a0. [DOI] [PubMed] [Google Scholar]
  19. Levy J. A. Pathogenesis of human immunodeficiency virus infection. Microbiol Rev. 1993 Mar;57(1):183–289. doi: 10.1128/mr.57.1.183-289.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li W. H., Tanimura M., Sharp P. M. Rates and dates of divergence between AIDS virus nucleotide sequences. Mol Biol Evol. 1988 Jul;5(4):313–330. doi: 10.1093/oxfordjournals.molbev.a040503. [DOI] [PubMed] [Google Scholar]
  21. Mohri H., Singh M. K., Ching W. T., Ho D. D. Quantitation of zidovudine-resistant human immunodeficiency virus type 1 in the blood of treated and untreated patients. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):25–29. doi: 10.1073/pnas.90.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sheehy N., Desselberger U. Sequence analysis of reverse transcriptase genes of zidovudine (AZT)-resistant and -sensitive human immunodeficiency virus type 1 strains. J Gen Virol. 1993 Feb;74(Pt 2):223–228. doi: 10.1099/0022-1317-74-2-223. [DOI] [PubMed] [Google Scholar]
  23. Wahlberg J., Fiore J., Angarano G., Uhlén M., Albert J. Apparent selection against transmission of zidovudine-resistant human immunodeficiency virus type 1 variants. J Infect Dis. 1994 Mar;169(3):611–614. doi: 10.1093/infdis/169.3.611. [DOI] [PubMed] [Google Scholar]
  24. Wiley C. A., Schrier R. D., Nelson J. A., Lampert P. W., Oldstone M. B. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7089–7093. doi: 10.1073/pnas.83.18.7089. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES