Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Feb;33(2):432–439. doi: 10.1128/jcm.33.2.432-439.1995

Reduced inhibition of Candida albicans adhesion by saliva from patients receiving oral cancer therapy.

M Umazume 1, E Ueta 1, T Osaki 1
PMCID: PMC227962  PMID: 7714204

Abstract

The effect of saliva on the adhesion of Candida albicans to epithelial cells was examined in vitro by using saliva from healthy controls and patients with oral squamous cell carcinoma. The adhesion of C. albicans to established epithelial tumor cells was reduced by 40% by salivary treatment of the C. albicans or epithelial cells. The inhibitory activity of saliva was almost completely abolished by anti-secretory immunoglobulin A antibody, concanavalin A, and mannose. Compared with saliva from healthy individuals, that from patients who had received chemoradiotherapy for oral carcinoma showed reduced suppression of C. albicans adhesion, which accompanied decreased salivary secretory immunoglobulin A and lactoferrin concentrations. A greater number of C. albicans cells adhered to buccal cells obtained from patients who had received chemoradiotherapy than to those from healthy individuals. Treatment of either epithelial cells or C. albicans with anticancer drugs induced an increase in adherence of epithelial cells and yeast cells. In contrast, concanavalin A- and mannose-pretreated C. albicans exhibited reduced adhesion to epithelial cells. No further decrease of C. albicans adhesion was observed when both epithelial cells and yeast phase C. albicans were treated with mannose. In conclusion, the inhibition of C. albicans adhesion by saliva depends largely on mannose residues on salivary glycoproteins and mannose is one of the binding ligands on both C. albicans and epithelial cells. In addition, anticancer therapy may induce oral C. albicans overgrowth by decreasing salivation and the concentrations of glycoproteins in saliva inhibiting C. albicans adhesion and by increasing the adhesive properties of both C. albicans and oral epithelial cells.

Full Text

The Full Text of this article is available as a PDF (348.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alaei S., Larcher C., Ebenbichler C., Prodinger W. M., Janatova J., Dierich M. P. Isolation and biochemical characterization of the iC3b receptor of Candida albicans. Infect Immun. 1993 Apr;61(4):1395–1399. doi: 10.1128/iai.61.4.1395-1399.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson M. L., Odds F. C. Adherence of Candida albicans to vaginal epithelia: significance of morphological form and effect of ketoconazole. Mykosen. 1985 Nov;28(11):531–540. doi: 10.1111/j.1439-0507.1985.tb02083.x. [DOI] [PubMed] [Google Scholar]
  3. Bergmann O. J. Oral infections and fever in immunocompromised patients with haematologic malignancies. Eur J Clin Microbiol Infect Dis. 1989 Mar;8(3):207–213. doi: 10.1007/BF01965262. [DOI] [PubMed] [Google Scholar]
  4. Bouchara J. P., Tronchin G., Annaix V., Robert R., Senet J. M. Laminin receptors on Candida albicans germ tubes. Infect Immun. 1990 Jan;58(1):48–54. doi: 10.1128/iai.58.1.48-54.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Calderone R. A., Braun P. C. Adherence and receptor relationships of Candida albicans. Microbiol Rev. 1991 Mar;55(1):1–20. doi: 10.1128/mr.55.1.1-20.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Calderone R. A., Cihlar R. L., Lee D. D., Hoberg K., Scheld W. M. Yeast adhesion in the pathogenesis of endocarditis due to Candida albicans: studies with adherence-negative mutants. J Infect Dis. 1985 Oct;152(4):710–715. doi: 10.1093/infdis/152.4.710. [DOI] [PubMed] [Google Scholar]
  7. Casanova M., Lopez-Ribot J. L., Monteagudo C., Llombart-Bosch A., Sentandreu R., Martinez J. P. Identification of a 58-kilodalton cell surface fibrinogen-binding mannoprotein from Candida albicans. Infect Immun. 1992 Oct;60(10):4221–4229. doi: 10.1128/iai.60.10.4221-4229.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Critchley I. A., Douglas L. J. Role of glycosides as epithelial cell receptors for Candida albicans. J Gen Microbiol. 1987 Mar;133(3):637–643. doi: 10.1099/00221287-133-3-637. [DOI] [PubMed] [Google Scholar]
  9. Edwards J. E., Jr, Gaither T. A., O'Shea J. J., Rotrosen D., Lawley T. J., Wright S. A., Frank M. M., Green I. Expression of specific binding sites on Candida with functional and antigenic characteristics of human complement receptors. J Immunol. 1986 Dec 1;137(11):3577–3583. [PubMed] [Google Scholar]
  10. Eigentler A., Schulz T. F., Larcher C., Breitwieser E. M., Myones B. L., Petzer A. L., Dierich M. P. C3bi-binding protein on Candida albicans: temperature-dependent expression and relationship to human complement receptor type 3. Infect Immun. 1989 Feb;57(2):616–622. doi: 10.1128/iai.57.2.616-622.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fukazawa Y., Shinoda T., Tsuchiya T. Response and specificity of antibodies for Candida albicans. J Bacteriol. 1968 Mar;95(3):754–763. doi: 10.1128/jb.95.3.754-763.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gilmore B. J., Retsinas E. M., Lorenz J. S., Hostetter M. K. An iC3b receptor on Candida albicans: structure, function, and correlates for pathogenicity. J Infect Dis. 1988 Jan;157(1):38–46. doi: 10.1093/infdis/157.1.38. [DOI] [PubMed] [Google Scholar]
  13. Gustafson K. S., Vercellotti G. M., Bendel C. M., Hostetter M. K. Molecular mimicry in Candida albicans. Role of an integrin analogue in adhesion of the yeast to human endothelium. J Clin Invest. 1991 Jun;87(6):1896–1902. doi: 10.1172/JCI115214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hart P. D., Russell E., Jr, Remington J. S. The compromised host and infection. II. Deep fungal infection. J Infect Dis. 1969 Aug;120(2):169–191. doi: 10.1093/infdis/120.2.169. [DOI] [PubMed] [Google Scholar]
  15. Heidenreich F., Dierich M. P. Candida albicans and Candida stellatoidea, in contrast to other Candida species, bind iC3b and C3d but not C3b. Infect Immun. 1985 Nov;50(2):598–600. doi: 10.1128/iai.50.2.598-600.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoffman M. P., Haidaris C. G. Analysis of Candida albicans adhesion to salivary mucin. Infect Immun. 1993 May;61(5):1940–1949. doi: 10.1128/iai.61.5.1940-1949.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hostetter M. K., Lorenz J. S., Preus L., Kendrick K. E. The iC3b receptor on Candida albicans: subcellular localization and modulation of receptor expression by glucose. J Infect Dis. 1990 Apr;161(4):761–768. doi: 10.1093/infdis/161.4.761. [DOI] [PubMed] [Google Scholar]
  18. Kanbe T., Han Y., Redgrave B., Riesselman M. H., Cutler J. E. Evidence that mannans of Candida albicans are responsible for adherence of yeast forms to spleen and lymph node tissue. Infect Immun. 1993 Jun;61(6):2578–2584. doi: 10.1128/iai.61.6.2578-2584.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kennedy M. J., Rogers A. L., Hanselmen L. R., Soll D. R., Yancey R. J., Jr Variation in adhesion and cell surface hydrophobicity in Candida albicans white and opaque phenotypes. Mycopathologia. 1988 Jun;102(3):149–156. doi: 10.1007/BF00437397. [DOI] [PubMed] [Google Scholar]
  20. Kimura L. H., Pearsall N. N. Relationship between germination of Candida albicans and increased adherence to human buccal epithelial cells. Infect Immun. 1980 May;28(2):464–468. doi: 10.1128/iai.28.2.464-468.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koshland M. E. Structure and function of the J chain. Adv Immunol. 1975;20:41–69. doi: 10.1016/s0065-2776(08)60206-0. [DOI] [PubMed] [Google Scholar]
  22. Lee J. C., King R. D. Characterization of Candida albicans adherence to human vaginal epithelial cells in vitro. Infect Immun. 1983 Sep;41(3):1024–1030. doi: 10.1128/iai.41.3.1024-1030.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lehrer N., Segal E., Cihlar R. L., Calderone R. A. Pathogenesis of vaginal candidiasis: studies with a mutant which has reduced ability to adhere in vitro. J Med Vet Mycol. 1986 Apr;24(2):127–131. doi: 10.1080/02681218680000191. [DOI] [PubMed] [Google Scholar]
  24. López-Ribot J. L., Casanova M., Monteagudo C., Sepúlveda P., Martínez J. P. Evidence for the presence of a high-affinity laminin receptor-like molecule on the surface of Candida albicans yeast cells. Infect Immun. 1994 Feb;62(2):742–746. doi: 10.1128/iai.62.2.742-746.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Martínez J. P., López-Ribot J. L., Chaffin W. L. Heterogeneous surface distribution of the fibrinogen-binding protein on Candida albicans. Infect Immun. 1994 Feb;62(2):709–712. doi: 10.1128/iai.62.2.709-712.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Matsumoto A., Yoshima H., Takasaki S., Kobata A. Structural study of the sugar chains of human lactoferrin: finding of four novel complex-type asparagine-linked sugar chains. J Biochem. 1982 Jan;91(1):143–155. doi: 10.1093/oxfordjournals.jbchem.a133671. [DOI] [PubMed] [Google Scholar]
  27. McCourtie J., Douglas L. J. Extracellular polymer of Candida albicans: isolation, analysis and role in adhesion. J Gen Microbiol. 1985 Mar;131(3):495–503. doi: 10.1099/00221287-131-3-495. [DOI] [PubMed] [Google Scholar]
  28. McCourtie J., Douglas L. J. Relationship between cell surface composition of Candida albicans and adherence to acrylic after growth on different carbon sources. Infect Immun. 1981 Jun;32(3):1234–1241. doi: 10.1128/iai.32.3.1234-1241.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mildvan D., Mathur U., Enlow R. W., Romain P. L., Winchester R. J., Colp C., Singman H., Adelsberg B. R., Spigland I. Opportunistic infections and immune deficiency in homosexual men. Ann Intern Med. 1982 Jun;96(6 Pt 1):700–704. doi: 10.7326/0003-4819-96-6-700. [DOI] [PubMed] [Google Scholar]
  30. Miyakawa Y., Kuribayashi T., Kagaya K., Suzuki M., Nakase T., Fukazawa Y. Role of specific determinants in mannan of Candida albicans serotype A in adherence to human buccal epithelial cells. Infect Immun. 1992 Jun;60(6):2493–2499. doi: 10.1128/iai.60.6.2493-2499.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mizoguchi A., Mizuochi T., Kobata A. Structures of the carbohydrate moieties of secretory component purified from human milk. J Biol Chem. 1982 Aug 25;257(16):9612–9621. [PubMed] [Google Scholar]
  32. Moors M. A., Stull T. L., Blank K. J., Buckley H. R., Mosser D. M. A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med. 1992 Jun 1;175(6):1643–1651. doi: 10.1084/jem.175.6.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Niedermeier W., Tomana M., Mestecky J. The carbohydrate composition of J chain from human serum and secretory IgA. Biochim Biophys Acta. 1972 Feb 29;257(2):527–530. doi: 10.1016/0005-2795(72)90307-8. [DOI] [PubMed] [Google Scholar]
  34. Ollert M. W., Wadsworth E., Calderone R. A. Reduced expression of the functionally active complement receptor for iC3b but not for C3d on an avirulent mutant of Candida albicans. Infect Immun. 1990 Apr;58(4):909–913. doi: 10.1128/iai.58.4.909-913.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Osaki T., Tatemoto Y., Yoneda K., Yamamoto T. Tumorigenicity of cell lines established from oral squamous cell carcinoma and its metastatic lymph nodes. Eur J Cancer B Oral Oncol. 1994 Sep;30B(5):296–301. doi: 10.1016/0964-1955(94)90028-0. [DOI] [PubMed] [Google Scholar]
  36. Palma C., Cassone A., Serbousek D., Pearson C. A., Djeu J. Y. Lactoferrin release and interleukin-1, interleukin-6, and tumor necrosis factor production by human polymorphonuclear cells stimulated by various lipopolysaccharides: relationship to growth inhibition of Candida albicans. Infect Immun. 1992 Nov;60(11):4604–4611. doi: 10.1128/iai.60.11.4604-4611.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Procop G. W., Anderson-Davis H., Volz P. A. Cobalt 60 radiation and growth of Candida species. Mycoses. 1988 Sep;31(9):466–470. [PubMed] [Google Scholar]
  38. Samaranayake L. P., MacFarlane T. W. The adhesion of the yeast Candida albicans to epithelial cells of human origin in vitro. Arch Oral Biol. 1981;26(10):815–820. doi: 10.1016/0003-9969(81)90178-3. [DOI] [PubMed] [Google Scholar]
  39. Samaranayake L. P. Oral mycoses in HIV infection. Oral Surg Oral Med Oral Pathol. 1992 Feb;73(2):171–180. doi: 10.1016/0030-4220(92)90191-r. [DOI] [PubMed] [Google Scholar]
  40. Sandin R. L., Rogers A. L., Patterson R. J., Beneke E. S. Evidence for mannose-mediated adherence of Candida albicans to human buccal cells in vitro. Infect Immun. 1982 Jan;35(1):79–85. doi: 10.1128/iai.35.1.79-85.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sasada M., Kubo A., Nishimura T., Kakita T., Moriguchi T., Yamamoto K., Uchino H. Candidacidal activity of monocyte-derived human macrophages: relationship between Candida killing and oxygen radical generation by human macrophages. J Leukoc Biol. 1987 Apr;41(4):289–294. doi: 10.1002/jlb.41.4.289. [DOI] [PubMed] [Google Scholar]
  42. Tabak L. A., Levine M. J., Mandel I. D., Ellison S. A. Role of salivary mucins in the protection of the oral cavity. J Oral Pathol. 1982 Feb;11(1):1–17. doi: 10.1111/j.1600-0714.1982.tb00138.x. [DOI] [PubMed] [Google Scholar]
  43. Thompson H. L., Wilton J. M. Interaction and intracellular killing of Candida albicans blastospores by human polymorphonuclear leucocytes, monocytes and monocyte-derived macrophages in aerobic and anaerobic conditions. Clin Exp Immunol. 1992 Feb;87(2):316–321. doi: 10.1111/j.1365-2249.1992.tb02994.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tomana M., Niedermeier W., Mestecky J., Skvaril F. The differences in carbohydrate composition between the subclasses of IgA immunoglobulins. Immunochemistry. 1976 Apr;13(4):325–328. doi: 10.1016/0019-2791(76)90342-6. [DOI] [PubMed] [Google Scholar]
  45. Tomana M., Niedermeier W., Spivey C. Microdetermination of monosaccharides in glycoproteins by gas-liquid chromatography. Anal Biochem. 1978 Aug 15;89(1):110–118. doi: 10.1016/0003-2697(78)90731-5. [DOI] [PubMed] [Google Scholar]
  46. Tosh F. D., Douglas L. J. Characterization of a fucoside-binding adhesin of Candida albicans. Infect Immun. 1992 Nov;60(11):4734–4739. doi: 10.1128/iai.60.11.4734-4739.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ueta E., Osaki T., Yoneda K., Yamamoto T. Functions of salivary polymorphonuclear leukocytes (SPMNs) and peripheral blood polymorphonuclear leukocytes (PPMNs) from healthy individuals and oral cancer patients. Clin Immunol Immunopathol. 1993 Mar;66(3):272–278. doi: 10.1006/clin.1993.1036. [DOI] [PubMed] [Google Scholar]
  48. Vargas K., Wertz P. W., Drake D., Morrow B., Soll D. R. Differences in adhesion of Candida albicans 3153A cells exhibiting switch phenotypes to buccal epithelium and stratum corneum. Infect Immun. 1994 Apr;62(4):1328–1335. doi: 10.1128/iai.62.4.1328-1335.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vincent C., Revillard J. P. Sandwich-type ELISA for free and bound secretory component in human biological fluids. J Immunol Methods. 1988 Feb 10;106(2):153–160. doi: 10.1016/0022-1759(88)90191-3. [DOI] [PubMed] [Google Scholar]
  50. Vudhichamnong K., Walker D. M., Ryley H. C. The effect of secretory immunoglobulin A on the in-vitro adherence of the yeast Candida albicans to human oral epithelial cells. Arch Oral Biol. 1982;27(8):617–621. doi: 10.1016/0003-9969(82)90184-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES