Abstract
Antibiotic resistance is an increasing problem among gonococci, not only in Asia, Africa and other regions, but also in the U.S.A. Resistance is of two fundamental types: plasmid-mediated, due to production of a beta-lactamase, and non-plasmid-mediated, due to additive effects of chromosomal mutations that decrease antibiotic entry or alter the target site for antibiotic action. Evidence suggests that conjugal (sexual) transfer of plasmids takes place between gonococci in nature, and that asexual transfer by naked transforming DNA may result in transfer of chromosomal resistance genes in nature. Although these events may be relatively rare in vivo, they probably contribute to the ability of the gonococcus to adapt to selective pressure of antibiotics.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson B., Albritton W. L., Biddle J., Johnson S. R. Common beta-lactamase-specifying plasmid in Haemophilus ducreyi and Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1984 Feb;25(2):296–297. doi: 10.1128/aac.25.2.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson B., Odugbemi T., Johnson S. Penicillinase producing Neisseria Gonorrhoeae strains from Nigeria with Far Eastern type plasmid. Lancet. 1982 Mar 20;1(8273):676–676. [PubMed] [Google Scholar]
- Ansink-Schiper M. C., van Embden J. D., van Klingeren B., Woudstra R. Further spread of plasmids among different auxotypes of penicillinase-producing gonococci. Lancet. 1982 Feb 20;1(8269):445–445. doi: 10.1016/s0140-6736(82)91640-3. [DOI] [PubMed] [Google Scholar]
- Bergström S., Norlander L., Norqvist A., Normark S. Contribution of a TEM-1-like beta-lactamase to penicillin resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1978 Apr;13(4):618–623. doi: 10.1128/aac.13.4.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biswas G. D., Blackman E. Y., Sparling P. F. High-frequency conjugal transfer of a gonococcal penicillinase plasmid. J Bacteriol. 1980 Sep;143(3):1318–1324. doi: 10.1128/jb.143.3.1318-1324.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biswas G., Comer S., Sparling P. F. Chromosomal location of antibiotic resistance genes in Neisseria gonorrhoeae. J Bacteriol. 1976 Mar;125(3):1207–1210. doi: 10.1128/jb.125.3.1207-1210.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown S., Warnnissorn T., Biddle J., Panikabutra K., Traisupa A. Antimicrobial resistance of Neisseria gonorrhoea in Bangkok: is single-drug treatment passé. Lancet. 1982 Dec 18;2(8312):1366–1368. doi: 10.1016/s0140-6736(82)91271-5. [DOI] [PubMed] [Google Scholar]
- Brunton J. L., Clare D., Ehrman N., Meier M. A. Evolution of antibiotic resistance plasmids in Neisseria gonorrhoeae and Haemophilus species. Clin Invest Med. 1983;6(3):221–228. [PubMed] [Google Scholar]
- Bygdeman S., Bäckman M., Danielsson D., Norgren M. Genetic linkage between serogroup specificity and antibiotic resistance in Neisseria gonorrhoeae. Acta Pathol Microbiol Immunol Scand B. 1982 Jun;90(3):243–250. doi: 10.1111/j.1699-0463.1982.tb00112.x. [DOI] [PubMed] [Google Scholar]
- Cannon J. G., Sparling P. F. The genetics of the gonococcus. Annu Rev Microbiol. 1984;38:111–133. doi: 10.1146/annurev.mi.38.100184.000551. [DOI] [PubMed] [Google Scholar]
- Catlin B. W., Pace P. J. Auxotypes and penicillin susceptibilities of Neisseria gonorrhoeae isolated from patients with gonorrhea involving two or more sites. Antimicrob Agents Chemother. 1977 Aug;12(2):147–156. doi: 10.1128/aac.12.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Centers for Disease Control (CDC) Chromosomally mediated resistant Neisseria gonorrhoeae--United States. MMWR Morb Mortal Wkly Rep. 1984 Jul 20;33(28):408–410. [PubMed] [Google Scholar]
- Dillon J. R., Pauzé M. Appearance in Canada of Neisseria gonorrhoeae strains with a 3.2 megadalton penicillinase-producing plasmid and a 24.5 megadalton transfer plasmid. Lancet. 1981 Sep 26;2(8248):700–700. doi: 10.1016/s0140-6736(81)91037-0. [DOI] [PubMed] [Google Scholar]
- Dougherty T. J., Koller A. E., Tomasz A. Penicillin-binding proteins of penicillin-susceptible and intrinsically resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1980 Nov;18(5):730–737. doi: 10.1128/aac.18.5.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenstein B. I., Sox T., Biswas G., Blackman E., Sparling P. F. Conjugal transfer of the gonococcal penicillinase plasmid. Science. 1977 Mar 11;195(4282):998–1000. doi: 10.1126/science.402693. [DOI] [PubMed] [Google Scholar]
- Faruki H., Kohmescher R. N., McKinney W. P., Sparling P. F. A community-based outbreak of infection with penicillin-resistant Neisseria gonorrhoeae not producing penicillinase (chromosomally mediated resistance). N Engl J Med. 1985 Sep 5;313(10):607–611. doi: 10.1056/NEJM198509053131004. [DOI] [PubMed] [Google Scholar]
- Guymon L. F., Sparling P. F. Altered crystal violet permeability and lytic behavior in antibiotic-resistant and -sensitive mutants of Neisseria gonorrhoeae. J Bacteriol. 1975 Nov;124(2):757–763. doi: 10.1128/jb.124.2.757-763.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagblom P., Segal E., Billyard E., So M. Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature. 1985 May 9;315(6015):156–158. doi: 10.1038/315156a0. [DOI] [PubMed] [Google Scholar]
- Heffron F., Sublett R., Hedges R. W., Jacob A., Falkow S. Origin of the TEM-beta-lactamase gene found on plasmids. J Bacteriol. 1975 Apr;122(1):250–256. doi: 10.1128/jb.122.1.250-256.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe H. W., Kraus S. J., Edwards T. A., Weinberger S. S., Zubrzycki L. Diagnosis of gonorrhea using a genetic transformation test on mailed clinical specimens. J Infect Dis. 1982 Aug;146(2):275–279. doi: 10.1093/infdis/146.2.275. [DOI] [PubMed] [Google Scholar]
- Maier T. W., Zubrzycki L., Coyle M. B. Genetic analysis of drug resistance in Neisseria gonorrhoeae: identification and linkage relationships of loci controlling drug resistance. Antimicrob Agents Chemother. 1975 May;7(5):676–681. doi: 10.1128/aac.7.5.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien T. F., Pla M. P., Mayer K. H., Kishi H., Gilleece E., Syvanen M., Hopkins J. D. Intercontinental spread of a new antibiotic resistance gene on an epidemic plasmid. Science. 1985 Oct 4;230(4721):87–88. doi: 10.1126/science.2994226. [DOI] [PubMed] [Google Scholar]
- Percival A., Rowlands J., Corkill J. E., Alergant C. D., Arya O. P., Rees E., Annels E. H. Penicillinase-producing Gonococci in Liverpool. Lancet. 1976 Dec 25;2(8000):1379–1382. doi: 10.1016/s0140-6736(76)91919-x. [DOI] [PubMed] [Google Scholar]
- Perine P. L., Thornsberry C., Schalla W., Biddle J., Siegel M. S., Wong K. H., Thompson S. E. Evidence for two distinct types of penicillinase-producing Neisseria gonorrhoeae. Lancet. 1977 Nov 12;2(8046):993–995. doi: 10.1016/s0140-6736(77)92891-4. [DOI] [PubMed] [Google Scholar]
- Phillips I. Beta-lactamase-producing, penicillin-resistant gonococcus. Lancet. 1976 Sep 25;2(7987):656–657. doi: 10.1016/s0140-6736(76)92466-1. [DOI] [PubMed] [Google Scholar]
- Roberts M., Elwell L. P., Falkow S. Molecular characterization of two beta-lactamase-specifying plasmids isolated from Neisseria gonorrhoeae. J Bacteriol. 1977 Aug;131(2):557–563. doi: 10.1128/jb.131.2.557-563.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts M., Falkow S. In vivo conjugal transfer of R plasmids in Neisseria gonorrhoeae. Infect Immun. 1979 Jun;24(3):982–984. doi: 10.1128/iai.24.3.982-984.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubens C. E., Farrar W. E., Jr, McGee Z. A., Schaffner W. Evolution of a plasmid mediating resistance to multiple antimicrobial agents during a prolonged epidemic of nosocomial infections. J Infect Dis. 1981 Feb;143(2):170–181. doi: 10.1093/infdis/143.2.170. [DOI] [PubMed] [Google Scholar]
- Sarubbi F. A., Jr, Sparling P. F. Transfer of antibiotic resistance in mixed cultures of Neisseria gonorrhoeae. J Infect Dis. 1974 Dec;130(6):660–663. doi: 10.1093/infdis/130.6.660. [DOI] [PubMed] [Google Scholar]
- Schwalbe R. S., Sparling P. F., Cannon J. G. Variation of Neisseria gonorrhoeae protein II among isolates from an outbreak caused by a single gonococcal strain. Infect Immun. 1985 Jul;49(1):250–252. doi: 10.1128/iai.49.1.250-252.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shtibel R. Non-beta-lactamase producing Neisseria gonorrhorea highly resistant to penicillin. Lancet. 1980 Jul 5;2(8184):39–39. doi: 10.1016/s0140-6736(80)92917-7. [DOI] [PubMed] [Google Scholar]
- Sparling P. F., Sarubbi F. A., Jr, Blackman E. Inheritance of low-level resistance to penicillin, tetracycline, and chloramphenicol in Neisseria gonorrhoeae. J Bacteriol. 1975 Nov;124(2):740–749. doi: 10.1128/jb.124.2.740-749.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warner P. F., Zubrzycki L. J., Chila M. Polygenes and modifier genes for tetracycline and penicillin resistance in Neisseria gonorrhoeae. J Gen Microbiol. 1980 Mar;117(1):103–110. doi: 10.1099/00221287-117-1-103. [DOI] [PubMed] [Google Scholar]
