Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Mar;33(3):528–534. doi: 10.1128/jcm.33.3.528-534.1995

Discriminatory power of three DNA-based typing techniques for Pseudomonas aeruginosa.

H Grundmann 1, C Schneider 1, D Hartung 1, F D Daschner 1, T L Pitt 1
PMCID: PMC227985  PMID: 7751352

Abstract

We assessed the capacity of three DNA typing techniques to discriminate between 81 geographically, temporally, and epidemiologically unrelated strains of Pseudomonas aeruginosa. The methods, representing powerful tools for hospital molecular epidemiology, included hybridization of restricted chromosomal DNA with toxA and genes coding for rRNA (rDNA) used as probes and macrorestriction analysis of SpeI-digested DNA by pulsed-field gel electrophoresis. The probe typing techniques were able to classify all strains into a limited number of types, and the discriminatory powers were 97.7 and 95.6% for toxA and rDNA typing, respectively. Strains that were indistinguishable on the basis of both toxA and rDNA types defined 12 probe type homology groups. Of these, one contained five strains, three contained three strains each, and eight groups were represented by two strains each. Strains in 10 of the homology groups had the same O serotype. SpeI macrorestriction patterns discriminated between all strains with at least four band differences, which corresponded to a similarity level of 85%. Fifteen pairs of strains were similar at a level of > 75% and differed by only four to seven bands. Of these pairs, 11 belonged to the same probe type homology group, indicating their clonal relatedness. We conclude that macrorestriction analysis of P. aeruginosa with SpeI provides the best means of discrimination between epidemiologically unrelated strains. However, DNA probe typing with either toxA or rDNA reveals information on the strain population structure and evolutionary relationships.

Full Text

The Full Text of this article is available as a PDF (229.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blanc D. S., Siegrist H. H., Sahli R., Francioli P. Ribotyping of Pseudomonas aeruginosa: discriminatory power and usefulness as a tool for epidemiological studies. J Clin Microbiol. 1993 Jan;31(1):71–77. doi: 10.1128/jcm.31.1.71-77.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Elrod R. P., Braun A. C. Pseudomonas aeruginosa: Its Rôle as a Plant Pathogen. J Bacteriol. 1942 Dec;44(6):633–645. doi: 10.1128/jb.44.6.633-645.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Grattard F., Pozzetto B., Ros A., Gaudin O. G. Differentiation of Pseudomonas aeruginosa strains by ribotyping: high discriminatory power by using a single restriction endonuclease. J Med Microbiol. 1994 Apr;40(4):275–281. doi: 10.1099/00222615-40-4-275. [DOI] [PubMed] [Google Scholar]
  4. Grothues D., Koopmann U., von der Hardt H., Tümmler B. Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol. 1988 Oct;26(10):1973–1977. doi: 10.1128/jcm.26.10.1973-1977.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grundmann H., Kropec A., Hartung D., Berner R., Daschner F. Pseudomonas aeruginosa in a neonatal intensive care unit: reservoirs and ecology of the nosocomial pathogen. J Infect Dis. 1993 Oct;168(4):943–947. doi: 10.1093/infdis/168.4.943. [DOI] [PubMed] [Google Scholar]
  6. Gruner E., Kropec A., Huebner J., Altwegg M., Daschner F. Ribotyping of Pseudomonas aeruginosa strains isolated from surgical intensive care patients. J Infect Dis. 1993 May;167(5):1216–1220. doi: 10.1093/infdis/167.5.1216. [DOI] [PubMed] [Google Scholar]
  7. Hartmann R. K., Toschka H. Y., Ulbrich N., Erdmann V. A. Genomic organization of rDNA in Pseudomonas aeruginosa. FEBS Lett. 1986 Jan 20;195(1-2):187–193. doi: 10.1016/0014-5793(86)80158-2. [DOI] [PubMed] [Google Scholar]
  8. Hunter P. R., Gaston M. A. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol. 1988 Nov;26(11):2465–2466. doi: 10.1128/jcm.26.11.2465-2466.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Leu H. S., Kaiser D. L., Mori M., Woolson R. F., Wenzel R. P. Hospital-acquired pneumonia. Attributable mortality and morbidity. Am J Epidemiol. 1989 Jun;129(6):1258–1267. doi: 10.1093/oxfordjournals.aje.a115245. [DOI] [PubMed] [Google Scholar]
  10. LiPuma J. J., Fisher M. C., Dasen S. E., Mortensen J. E., Stull T. L. Ribotype stability of serial pulmonary isolates of Pseudomonas cepacia. J Infect Dis. 1991 Jul;164(1):133–136. doi: 10.1093/infdis/164.1.133. [DOI] [PubMed] [Google Scholar]
  11. Liu P. V. Changes in somatic antigens of Pseudomonas aeruginosa induced by bacteriophages. J Infect Dis. 1969 Mar;119(3):237–246. doi: 10.1093/infdis/119.3.237. [DOI] [PubMed] [Google Scholar]
  12. Loutit J. S., Tompkins L. S. Restriction enzyme and Southern hybridization analyses of Pseudomonas aeruginosa strains from patients with cystic fibrosis. J Clin Microbiol. 1991 Dec;29(12):2897–2900. doi: 10.1128/jcm.29.12.2897-2900.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lowbury E. J., Thom B. T., Lilly H. A., Babb J. R., Whittall K. Sources of infection with Pseudomonas aeruginosa in patients with tracheostomy. J Med Microbiol. 1970 Feb;3(1):39–56. doi: 10.1099/00222615-3-1-39. [DOI] [PubMed] [Google Scholar]
  14. Miller P. J., Wenzel R. P. Etiologic organisms as independent predictors of death and morbidity associated with bloodstream infections. J Infect Dis. 1987 Sep;156(3):471–477. doi: 10.1093/infdis/156.3.471. [DOI] [PubMed] [Google Scholar]
  15. Ogle J. W., Janda J. M., Woods D. E., Vasil M. L. Characterization and use of a DNA probe as an epidemiological marker for Pseudomonas aeruginosa. J Infect Dis. 1987 Jan;155(1):119–126. doi: 10.1093/infdis/155.1.119. [DOI] [PubMed] [Google Scholar]
  16. Ojeniyi B., Wolz C., Döring G., Lam J. S., Rosdahl V. T., Høiby N. Typing of polyagglutinable Pseudomonas aeruginosa isolates from cystic fibrosis patients. APMIS. 1990 May;98(5):423–431. [PubMed] [Google Scholar]
  17. Orskov F., Orskov I. From the national institutes of health. Summary of a workshop on the clone concept in the epidemiology, taxonomy, and evolution of the enterobacteriaceae and other bacteria. J Infect Dis. 1983 Aug;148(2):346–357. doi: 10.1093/infdis/148.2.346. [DOI] [PubMed] [Google Scholar]
  18. Pier G. B. Pulmonary disease associated with Pseudomonas aeruginosa in cystic fibrosis: current status of the host-bacterium interaction. J Infect Dis. 1985 Apr;151(4):575–580. doi: 10.1093/infdis/151.4.575. [DOI] [PubMed] [Google Scholar]
  19. Pitt T. L. Epidemiological typing of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 1988 Apr;7(2):238–247. doi: 10.1007/BF01963095. [DOI] [PubMed] [Google Scholar]
  20. Pradella S., Pletschette M., Mantey-Stiers F., Bautsch W. Macrorestriction analysis of Pseudomonas aeruginosa in colonized burn patients. Eur J Clin Microbiol Infect Dis. 1994 Feb;13(2):122–128. doi: 10.1007/BF01982184. [DOI] [PubMed] [Google Scholar]
  21. Römling U., Grothues D., Bautsch W., Tümmler B. A physical genome map of Pseudomonas aeruginosa PAO. EMBO J. 1989 Dec 20;8(13):4081–4089. doi: 10.1002/j.1460-2075.1989.tb08592.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Römling U., Wingender J., Müller H., Tümmler B. A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol. 1994 Jun;60(6):1734–1738. doi: 10.1128/aem.60.6.1734-1738.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shooter R. A., Walker K. A., Williams V. R., Horgan G. M., Parker M. T., Asheshov E. H., Bullimore J. F. Faecal carriage of Pseudomonas aeruginosa in hospital patients. Possible spread from patient to patient. Lancet. 1966 Dec 17;2(7477):1331–1334. doi: 10.1016/s0140-6736(66)92082-4. [DOI] [PubMed] [Google Scholar]
  24. Speert D. P., Campbell M. E., Farmer S. W., Volpel K., Joffe A. M., Paranchych W. Use of a pilin gene probe to study molecular epidemiology of Pseudomonas aeruginosa. J Clin Microbiol. 1989 Nov;27(11):2589–2593. doi: 10.1128/jcm.27.11.2589-2593.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Struelens M. J., Schwam V., Deplano A., Baran D. Genome macrorestriction analysis of diversity and variability of Pseudomonas aeruginosa strains infecting cystic fibrosis patients. J Clin Microbiol. 1993 Sep;31(9):2320–2326. doi: 10.1128/jcm.31.9.2320-2326.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stull T. L., LiPuma J. J., Edlind T. D. A broad-spectrum probe for molecular epidemiology of bacteria: ribosomal RNA. J Infect Dis. 1988 Feb;157(2):280–286. doi: 10.1093/infdis/157.2.280. [DOI] [PubMed] [Google Scholar]
  27. Vasil M. L., Chamberlain C., Grant C. C. Molecular studies of Pseudomonas exotoxin A gene. Infect Immun. 1986 May;52(2):538–548. doi: 10.1128/iai.52.2.538-548.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vasil M. L., Ogle J. W., Grant C. C., Vasil A. I. Recombinant DNA approaches to the study of the regulation of virulence factors and epidemiology of Pseudomonas aeruginosa. Antibiot Chemother (1971) 1987;39:264–278. doi: 10.1159/000414352. [DOI] [PubMed] [Google Scholar]
  29. Whitby J. L., Rampling A. Pseudomonas aeruginosa contamination in domestic and hospital environments. Lancet. 1972 Jan 1;1(7740):15–17. doi: 10.1016/s0140-6736(72)90006-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES