Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Mar;33(3):658–660. doi: 10.1128/jcm.33.3.658-660.1995

Identification of varicella-zoster virus strains by PCR analysis of three repeat elements and a PstI-site-less region.

M Takada 1, T Suzutani 1, I Yoshida 1, M Matoba 1, M Azuma 1
PMCID: PMC228009  PMID: 7751373

Abstract

We established a method of identifying varicella-zoster virus (VZV) strains, especially those of the Oka vaccine, in patients with clinical VZV infections. The DNAs of 30 clinically isolated strains and 4 laboratory strains including the Oka vaccine strain and its parent VZV strain, were analyzed by PCR with four sets of primers for the four variable regions, R2, R4, R5, and a region without a PstI site (PS). R4 was unstable in four laboratory VZV strains and was excluded from the study. The other regions were stable in several passages in cell culture. The number of copies in R2 and R5 were distributed from 2 to 13 and from 1 to 3, respectively, in the strains analyzed. The vaccine strain had seven copies in R2 and two copies in R5, and it was PS negative. Among 30 clinical isolates, 3, 23, and 11 strains had the same characteristics as the vaccine strain in R2, R5, and PS, respectively. Therefore, by this method, 97.2% of the isolates were distinguished from the Oka vaccine strain. This strategy will be useful in diagnosing VZV infections induced by the vaccine strain.

Full Text

The Full Text of this article is available as a PDF (246.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casey T. A., Ruyechan W. T., Flora M. N., Reinhold W., Straus S. E., Hay J. Fine mapping and sequencing of a variable segment in the inverted repeat region of varicella-zoster virus DNA. J Virol. 1985 May;54(2):639–642. doi: 10.1128/jvi.54.2.639-642.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davison A. J., Scott J. E. The complete DNA sequence of varicella-zoster virus. J Gen Virol. 1986 Sep;67(Pt 9):1759–1816. doi: 10.1099/0022-1317-67-9-1759. [DOI] [PubMed] [Google Scholar]
  3. Hayakawa Y., Torigoe S., Shiraki K., Yamanishi K., Takahashi M. Biologic and biophysical markers of a live varicella vaccine strain (Oka): identification of clinical isolates from vaccine recipients. J Infect Dis. 1984 Jun;149(6):956–963. doi: 10.1093/infdis/149.6.956. [DOI] [PubMed] [Google Scholar]
  4. Hondo R., Yogo Y. Strain variation of R5 direct repeats in the right-hand portion of the long unique segment of varicella-zoster virus DNA. J Virol. 1988 Aug;62(8):2916–2921. doi: 10.1128/jvi.62.8.2916-2921.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hondo R., Yogo Y., Yoshida M., Fujima A., Itoh S. Distribution of varicella-zoster virus strains carrying a PstI-site-less mutation in Japan and DNA change responsible for the mutation. Jpn J Exp Med. 1989 Dec;59(6):233–237. [PubMed] [Google Scholar]
  6. Kinchington P. R., Ling P., Pensiero M., Moss B., Ruyechan W. T., Hay J. The glycoprotein products of varicella-zoster virus gene 14 and their defective accumulation in a vaccine strain (Oka). J Virol. 1990 Sep;64(9):4540–4548. doi: 10.1128/jvi.64.9.4540-4548.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kinchington P. R., Remenick J., Ostrove J. M., Straus S. E., Ruyechan W. T., Hay J. Putative glycoprotein gene of varicella-zoster virus with variable copy numbers of a 42-base-pair repeat sequence has homology to herpes simplex virus glycoprotein C. J Virol. 1986 Sep;59(3):660–668. doi: 10.1128/jvi.59.3.660-668.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kinoshita H., Hondo R., Taguchi F., Yogo Y. Variation of R1 repeated sequence present in open reading frame 11 of varicella-zoster virus strains. J Virol. 1988 Mar;62(3):1097–1100. doi: 10.1128/jvi.62.3.1097-1100.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lacey S. F., Suzutani T., Powell K. L., Purifoy D. J., Honess R. W. Analysis of mutations in the thymidine kinase genes of drug-resistant varicella-zoster virus populations using the polymerase chain reaction. J Gen Virol. 1991 Mar;72(Pt 3):623–630. doi: 10.1099/0022-1317-72-3-623. [DOI] [PubMed] [Google Scholar]
  10. Ostrove J. M. Molecular biology of varicella zoster virus. Adv Virus Res. 1990;38:45–98. doi: 10.1016/s0065-3527(08)60859-3. [DOI] [PubMed] [Google Scholar]
  11. Ragozzino M. W., Melton L. J., 3rd, Kurland L. T., Chu C. P., Perry H. O. Population-based study of herpes zoster and its sequelae. Medicine (Baltimore) 1982 Sep;61(5):310–316. doi: 10.1097/00005792-198209000-00003. [DOI] [PubMed] [Google Scholar]
  12. Sakuma T. Strains of varicella-zoster virus resistant to 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil. Antimicrob Agents Chemother. 1984 Jun;25(6):742–746. doi: 10.1128/aac.25.6.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Takahashi M., Otsuka T., Okuno Y., Asano Y., Yazaki T. Live vaccine used to prevent the spread of varicella in children in hospital. Lancet. 1974 Nov 30;2(7892):1288–1290. doi: 10.1016/s0140-6736(74)90144-5. [DOI] [PubMed] [Google Scholar]
  14. Vlazny D. A., Hyman R. W. Errant processing and structural alterations of genomes present in a varicella-zoster virus vaccine. J Virol. 1985 Oct;56(1):92–101. doi: 10.1128/jvi.56.1.92-101.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES