Abstract
A reverse transcriptase PCR (RT-PCR) was used for rapid determination of the hemagglutinin (HA) cleavage site sequence, a marker for the virulence potential of avian influenza viruses. When applied to specimens from chickens experimentally infected with either a virulent or an avirulent virus, RT-PCR uniformly detected the HA gene, even in specimens that were negative for virus by standard testing in eggs. This technique, combined with sequencing of the HA cleavage site, offers a rapid and sensitive way to assess the virulence potential of avian influenza viruses. Early detection of field isolates with virulence-associated structural motifs at the HA cleavage site would allow better control of influenza among large poultry populations.
Full Text
The Full Text of this article is available as a PDF (166.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bean W. J., Kawaoka Y., Wood J. M., Pearson J. E., Webster R. G. Characterization of virulent and avirulent A/chicken/Pennsylvania/83 influenza A viruses: potential role of defective interfering RNAs in nature. J Virol. 1985 Apr;54(1):151–160. doi: 10.1128/jvi.54.1.151-160.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bosch F. X., Orlich M., Klenk H. D., Rott R. The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology. 1979 May;95(1):197–207. doi: 10.1016/0042-6822(79)90414-8. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Claas E. C., van Milaan A. J., Sprenger M. J., Ruiten-Stuiver M., Arron G. I., Rothbarth P. H., Masurel N. Prospective application of reverse transcriptase polymerase chain reaction for diagnosing influenza infections in respiratory samples from a children's hospital. J Clin Microbiol. 1993 Aug;31(8):2218–2221. doi: 10.1128/jcm.31.8.2218-2221.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz J. M., Wang M., Webster R. G. Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. J Virol. 1990 Apr;64(4):1808–1811. doi: 10.1128/jvi.64.4.1808-1811.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawaoka Y., Naeve C. W., Webster R. G. Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology. 1984 Dec;139(2):303–316. doi: 10.1016/0042-6822(84)90376-3. [DOI] [PubMed] [Google Scholar]
- Kawaoka Y., Nestorowicz A., Alexander D. J., Webster R. G. Molecular analyses of the hemagglutinin genes of H5 influenza viruses: origin of a virulent turkey strain. Virology. 1987 May;158(1):218–227. doi: 10.1016/0042-6822(87)90256-x. [DOI] [PubMed] [Google Scholar]
- Nestorowicz A., Kawaoka Y., Bean W. J., Webster R. G. Molecular analysis of the hemagglutinin genes of Australian H7N7 influenza viruses: role of passerine birds in maintenance or transmission? Virology. 1987 Oct;160(2):411–418. doi: 10.1016/0042-6822(87)90012-2. [DOI] [PubMed] [Google Scholar]
- Philpott M., Hioe C., Sheerar M., Hinshaw V. S. Hemagglutinin mutations related to attenuation and altered cell tropism of a virulent avian influenza A virus. J Virol. 1990 Jun;64(6):2941–2947. doi: 10.1128/jvi.64.6.2941-2947.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito T., Horimoto T., Kawaoka Y., Senne D. A., Webster R. G. Emergence of a potentially pathogenic H5N2 influenza virus in chickens. Virology. 1994 Jun;201(2):277–284. doi: 10.1006/viro.1994.1292. [DOI] [PubMed] [Google Scholar]
- Schorr E., Wentworth D., Hinshaw V. S. Use of polymerase chain reaction to detect swine influenza virus in nasal swab specimens. Am J Vet Res. 1994 Jul;55(7):952–956. [PubMed] [Google Scholar]
- Vey M., Orlich M., Adler S., Klenk H. D., Rott R., Garten W. Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R. Virology. 1992 May;188(1):408–413. doi: 10.1016/0042-6822(92)90775-K. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang M., Webster R. G. Lack of persistence of influenza virus genetic information in ducks. Arch Virol. 1990;111(3-4):263–267. doi: 10.1007/BF01311060. [DOI] [PubMed] [Google Scholar]
- Webster R. G., Hinshaw V. S., Bean W. J., Van Wyke K. L., Geraci J. R., St Aubin D. J., Petursson G. Characterization of an influenza A virus from seals. Virology. 1981 Sep;113(2):712–724. doi: 10.1016/0042-6822(81)90200-2. [DOI] [PubMed] [Google Scholar]
- Wood G. W., Banks J., McCauley J. W., Alexander D. J. Deduced amino acid sequences of the haemagglutinin of H5N1 avian influenza virus isolates from an outbreak in turkeys in Norfolk, England. Arch Virol. 1994;134(1-2):185–194. doi: 10.1007/BF01379117. [DOI] [PubMed] [Google Scholar]
- Wood G. W., McCauley J. W., Bashiruddin J. B., Alexander D. J. Deduced amino acid sequences at the haemagglutinin cleavage site of avian influenza A viruses of H5 and H7 subtypes. Arch Virol. 1993;130(1-2):209–217. doi: 10.1007/BF01319010. [DOI] [PubMed] [Google Scholar]
- Yamada A., Imanishi J., Nakajima E., Nakajima K., Nakajima S. Detection of influenza viruses in throat swab by using polymerase chain reaction. Microbiol Immunol. 1991;35(3):259–265. doi: 10.1111/j.1348-0421.1991.tb01555.x. [DOI] [PubMed] [Google Scholar]
