Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Apr;33(4):824–828. doi: 10.1128/jcm.33.4.824-828.1995

Detection of Rickettsia japonica in Haemaphysalis longicornis ticks by restriction fragment length polymorphism of PCR product.

T Uchida 1, Y Yan 1, S Kitaoka 1
PMCID: PMC228049  PMID: 7790445

Abstract

PCR was applied to the detection of Rickettsia japonica, the causative agent of Oriental spotted fever (OSF), in ticks collected at two sites of the Muroto area on Shikoku Island, a major area in Japan where OSF is endemic. Primer pair Rr190.70p and Rr190.602n of the R. rickettsii 190-kDa antigen gene sequence of Regnery and others (R.L. Regnery, C.L. Spruill, and B.D. Plikaytis, J. Bacteriol. 173:1576-1589, 1991) primed the DNA extracted from Haemaphysalis longicornis ticks but not those extracted from Haemaphysalis formosensis, Haemaphysalis flava, Haemaphysalis hystricis, or Amblyomma testudinarium ticks. Digestion of the amplification product with the restriction endonucleases PstI and AluI produced the restriction fragment length polymorphism pattern specific to R. japonica. The HindIII and MspI digests gave restriction fragment length polymorphism patterns identical to those of the PCR product from R. japonica DNA. Hemolymph preparations of H. longicornis ticks were demonstrated to contain rod-shaped organisms that were detected by immunofluorescence with the monoclonal antibody specific to R. japonica species. The primer pair did not amplify the DNA of a laboratory colony of H. longicornis ticks originally collected at an area where OSF is not endemic. Our results provided evidence that H. longicornis ticks might be an arthropod reservoir for R. japonica and a vector of OSF.

Full Text

The Full Text of this article is available as a PDF (270.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azad A. F., Sacci J. B., Jr, Nelson W. M., Dasch G. A., Schmidtmann E. T., Carl M. Genetic characterization and transovarial transmission of a typhus-like rickettsia found in cat fleas. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):43–46. doi: 10.1073/pnas.89.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BOVARNICK M. R., MILLER J. C., SNYDER J. C. The influence of certain salts, amino acids, sugars, and proteins on the stability of rickettsiae. J Bacteriol. 1950 Apr;59(4):509–522. doi: 10.1128/jb.59.4.509-522.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burgdorfer W. Hemolymph test. A technique for detection of rickettsiae in ticks. Am J Trop Med Hyg. 1970 Nov;19(6):1010–1014. [PubMed] [Google Scholar]
  4. Dupont H. T., Cornet J. P., Raoult D. Identification of rickettsiae from ticks collected in the Central African Republic using the polymerase chain reaction. Am J Trop Med Hyg. 1994 Mar;50(3):373–380. doi: 10.4269/ajtmh.1994.50.373. [DOI] [PubMed] [Google Scholar]
  5. Funato T., Kitamura Y., Kawamura A., Uchida T. [Rickettsiosis of spotted fever group encountered in Muroto area of Shikoku, Japan--clinical and epidemiological features of 23 cases]. Kansenshogaku Zasshi. 1988 Sep;62(9):783–791. doi: 10.11150/kansenshogakuzasshi1970.62.783. [DOI] [PubMed] [Google Scholar]
  6. Gage K. L., Gilmore R. D., Karstens R. H., Schwan T. G. Detection of Rickettsia rickettsii in saliva, hemolymph and triturated tissues of infected Dermacentor andersoni ticks by polymerase chain reaction. Mol Cell Probes. 1992 Aug;6(4):333–341. doi: 10.1016/0890-8508(92)90010-u. [DOI] [PubMed] [Google Scholar]
  7. Gage K. L., Schrumpf M. E., Karstens R. H., Burgdorfer W., Schwan T. G. DNA typing of rickettsiae in naturally infected ticks using a polymerase chain reaction/restriction fragment length polymorphism system. Am J Trop Med Hyg. 1994 Feb;50(2):247–260. doi: 10.4269/ajtmh.1994.50.247. [DOI] [PubMed] [Google Scholar]
  8. Hayes S. F., Burgdorfer W. Reactivation of Rickettsia rickettsii in Dermacentor andersoni ticks: an ultrastructural analysis. Infect Immun. 1982 Aug;37(2):779–785. doi: 10.1128/iai.37.2.779-785.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoogstraal H., Roberts F. H., Kohls G. M., Tipton V. J. Review of Haemaphysalis (kaiseriana) Longicornis Neumann (resurrected) of Australia, New Zealand, New Caledonia, Fiji, Japan, Korea, and Northeastern China and USSR, and its parthenogenetic and bisexual populations (Ixodoidea, Ixodidae). J Parasitol. 1968 Dec;54(6):1197–1213. [PubMed] [Google Scholar]
  10. Lange J. V., el Dessouky A. G., Manor E., Merdan A. I., Azad A. F. Spotted fever rickettsiae in ticks from the northern Sinai Governate, Egypt. Am J Trop Med Hyg. 1992 May;46(5):546–551. doi: 10.4269/ajtmh.1992.46.546. [DOI] [PubMed] [Google Scholar]
  11. McDade J. E., Newhouse V. F. Natural history of Rickettsia rickettsii. Annu Rev Microbiol. 1986;40:287–309. doi: 10.1146/annurev.mi.40.100186.001443. [DOI] [PubMed] [Google Scholar]
  12. Regnery R. L., Spruill C. L., Plikaytis B. D. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol. 1991 Mar;173(5):1576–1589. doi: 10.1128/jb.173.5.1576-1589.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Takada N., Fujita H., Yano Y., Tsuboi Y., Mahara F. First isolation of a rickettsia closely related to Japanese spotted fever pathogen from a tick in Japan. J Med Entomol. 1994 Mar;31(2):183–185. doi: 10.1093/jmedent/31.2.183. [DOI] [PubMed] [Google Scholar]
  14. Uchida T. Rickettsia japonica, the etiologic agent of Oriental spotted fever. Microbiol Immunol. 1993;37(2):91–102. doi: 10.1111/j.1348-0421.1993.tb03185.x. [DOI] [PubMed] [Google Scholar]
  15. Uchida T., Tashiro F., Funato T., Kitamura Y. Isolation of a spotted fever group Rickettsia from a patient with febrile exanthematous illness in Shikoku, Japan. Microbiol Immunol. 1986;30(12):1323–1326. doi: 10.1111/j.1348-0421.1986.tb03053.x. [DOI] [PubMed] [Google Scholar]
  16. Uchida T., Uchiyama T., Koyama A. H. Isolation of spotted fever group rickettsiae from humans in Japan. J Infect Dis. 1988 Sep;158(3):664–665. doi: 10.1093/infdis/158.3.664-a. [DOI] [PubMed] [Google Scholar]
  17. Uchida T., Uchiyama T., Kumano K., Walker D. H. Rickettsia japonica sp. nov., the etiological agent of spotted fever group rickettsiosis in Japan. Int J Syst Bacteriol. 1992 Apr;42(2):303–305. doi: 10.1099/00207713-42-2-303. [DOI] [PubMed] [Google Scholar]
  18. Uchida T., Yu X. J., Uchiyama T., Walker D. H. Identification of a unique spotted fever group rickettsia from humans in Japan. J Infect Dis. 1989 Jun;159(6):1122–1126. doi: 10.1093/infdis/159.6.1122. [DOI] [PubMed] [Google Scholar]
  19. Uchiyama T., Uchida T., Walker D. H. Species-specific monoclonal antibodies to Rickettsia japonica, a newly identified spotted fever group rickettsia. J Clin Microbiol. 1990 Jun;28(6):1177–1180. doi: 10.1128/jcm.28.6.1177-1180.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Webb L., Carl M., Malloy D. C., Dasch G. A., Azad A. F. Detection of murine typhus infection in fleas by using the polymerase chain reaction. J Clin Microbiol. 1990 Mar;28(3):530–534. doi: 10.1128/jcm.28.3.530-534.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yan Y., Uchiyama T., Uchida T. Differentiation of Rickettsia japonica by restriction endonuclease fragment length polymorphism using products of polymerase chain reaction amplification with Rickettsia rickettsii 190-kilodalton surface antigen gene primers. Microbiol Immunol. 1993;37(6):441–445. doi: 10.1111/j.1348-0421.1993.tb03234.x. [DOI] [PubMed] [Google Scholar]
  22. Yan Y., Uchiyama T., Uchida T. Nucleotide sequence of polymerase chain reaction product amplified from Rickettsia japonica DNA using Rickettsia rickettsii 190-kilodalton surface antigen gene primers. Microbiol Immunol. 1994;38(11):865–869. doi: 10.1111/j.1348-0421.1994.tb02139.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES