Abstract
Because of the long time required to isolate Mycobacterium tuberculosis in culture, there is an acute need for simple rapid methods for direct detection of M. tuberculosis from human sputum specimens. We have developed and characterized quantitative manual Q beta replicase and PCR assays for M. tuberculosis. The Q beta replicase assay was based on reversible target capture of M. tuberculosis 23S rRNA followed by amplification of a replicatable detector probe with Q beta replicase. For PCR assays, primers generating a 370-bp amplification product from the IS6110 insertion element were used in combination with a control plasmid containing an internal deletion in the IS6110 amplicon. Serial dilutions of M. tuberculosis were spiked into sputum and subjected to digestion and decontamination with N-acetyl-L-cysteine and NaOH. Assay conditions were optimized for hybridization and sample processing chemistries in order to maximize sample utilization. Following assay optimization, the sensitivities of the Q beta replicase and PCR assays of spiked sputum samples were 0.5 and 5.0 CFU per assay reaction, respectively. The effects of sputum matrix on each assay were examined by testing 20 patient sputum samples which had been cultured for M. tuberculosis. The culture-positive samples included smear-positive and smear-negative samples. The results of the Q beta replicase assay were not inhibited by sputum and were in 100% agreement with those of culture, including detection of 10 culture-positive specimens. However, using an internal control plasmid coamplified with each PCR as an indicator, we detected PCR inhibition in 9 of 20 samples tested.(ABSTRACT TRUNCATED AT 250 WORDS)
Full Text
The Full Text of this article is available as a PDF (293.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- An Q., Radcliffe G., Vassallo R., Buxton D., O'Brien W. J., Pelletier D. A., Weisburg W. G., Klinger J. D., Olive D. M. Infection with a plasmid-free variant Chlamydia related to Chlamydia trachomatis identified by using multiple assays for nucleic acid detection. J Clin Microbiol. 1992 Nov;30(11):2814–2821. doi: 10.1128/jcm.30.11.2814-2821.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barns S. M., Lane D. J., Sogin M. L., Bibeau C., Weisburg W. G. Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol. 1991 Apr;173(7):2250–2255. doi: 10.1128/jb.173.7.2250-2255.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brisson-Noël A., Gicquel B., Lecossier D., Lévy-Frébault V., Nassif X., Hance A. J. Rapid diagnosis of tuberculosis by amplification of mycobacterial DNA in clinical samples. Lancet. 1989 Nov 4;2(8671):1069–1071. doi: 10.1016/s0140-6736(89)91082-9. [DOI] [PubMed] [Google Scholar]
- Clarridge J. E., 3rd, Shawar R. M., Shinnick T. M., Plikaytis B. B. Large-scale use of polymerase chain reaction for detection of Mycobacterium tuberculosis in a routine mycobacteriology laboratory. J Clin Microbiol. 1993 Aug;31(8):2049–2056. doi: 10.1128/jcm.31.8.2049-2056.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenach K. D., Cave M. D., Bates J. H., Crawford J. T. Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis. 1990 May;161(5):977–981. doi: 10.1093/infdis/161.5.977. [DOI] [PubMed] [Google Scholar]
- Forbes B. A., Hicks K. E. Direct detection of Mycobacterium tuberculosis in respiratory specimens in a clinical laboratory by polymerase chain reaction. J Clin Microbiol. 1993 Jul;31(7):1688–1694. doi: 10.1128/jcm.31.7.1688-1694.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunsaker W. R., Badri H., Lombardo M., Collins M. L. Nucleic acid hybridization assays employing dA-tailed capture probes. II. Advanced multiple capture methods. Anal Biochem. 1989 Sep;181(2):360–370. doi: 10.1016/0003-2697(89)90256-x. [DOI] [PubMed] [Google Scholar]
- Iovannisci D. M., Winn-Deen E. S. Ligation amplification and fluorescence detection of Mycobacterium tuberculosis DNA. Mol Cell Probes. 1993 Feb;7(1):35–43. doi: 10.1006/mcpr.1993.1005. [DOI] [PubMed] [Google Scholar]
- KUBICA G. P., DYE W. E., COHN M. L., MIDDLEBROOK G. Sputum digestion and decontamination with N-acetyl-L-cysteine-sodium hydroxide for culture of mycobacteria. Am Rev Respir Dis. 1963 May;87:775–779. doi: 10.1164/arrd.1963.87.5.775. [DOI] [PubMed] [Google Scholar]
- Kolk A. H., Noordhoek G. T., de Leeuw O., Kuijper S., van Embden J. D. Mycobacterium smegmatis strain for detection of Mycobacterium tuberculosis by PCR used as internal control for inhibition of amplification and for quantification of bacteria. J Clin Microbiol. 1994 May;32(5):1354–1356. doi: 10.1128/jcm.32.5.1354-1356.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krasnow I., Wayne L. G. Comparison of methods for tuberculosis bacteriology. Appl Microbiol. 1969 Nov;18(5):915–917. doi: 10.1128/am.18.5.915-917.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubica G. P., Gross W. M., Hawkins J. E., Sommers H. M., Vestal A. L., Wayne L. G. Laboratory services for mycobacterial diseases. Am Rev Respir Dis. 1975 Dec;112(6):773–787. doi: 10.1164/arrd.1975.112.6.773. [DOI] [PubMed] [Google Scholar]
- Kwok S., Higuchi R. Avoiding false positives with PCR. Nature. 1989 May 18;339(6221):237–238. doi: 10.1038/339237a0. [DOI] [PubMed] [Google Scholar]
- Lomeli H., Tyagi S., Pritchard C. G., Lizardi P. M., Kramer F. R. Quantitative assays based on the use of replicatable hybridization probes. Clin Chem. 1989 Sep;35(9):1826–1831. [PubMed] [Google Scholar]
- Morrissey D. V., Collins M. L. Nucleic acid hybridization assays employing dA-tailed capture probes. Single capture methods. Mol Cell Probes. 1989 Jun;3(2):189–207. doi: 10.1016/0890-8508(89)90029-7. [DOI] [PubMed] [Google Scholar]
- Morrissey D. V., Lombardo M., Eldredge J. K., Kearney K. R., Groody E. P., Collins M. L. Nucleic acid hybridization assays employing dA-tailed capture probes. I. Multiple capture methods. Anal Biochem. 1989 Sep;181(2):345–359. doi: 10.1016/0003-2697(89)90255-8. [DOI] [PubMed] [Google Scholar]
- Nolte F. S., Metchock B., McGowan J. E., Jr, Edwards A., Okwumabua O., Thurmond C., Mitchell P. S., Plikaytis B., Shinnick T. Direct detection of Mycobacterium tuberculosis in sputum by polymerase chain reaction and DNA hybridization. J Clin Microbiol. 1993 Jul;31(7):1777–1782. doi: 10.1128/jcm.31.7.1777-1782.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfyffer G. E., Kissling P., Wirth R., Weber R. Direct detection of Mycobacterium tuberculosis complex in respiratory specimens by a target-amplified test system. J Clin Microbiol. 1994 Apr;32(4):918–923. doi: 10.1128/jcm.32.4.918-923.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shah J. S., Liu J., Smith J., Popoff S., Radcliffe G., O'Brien W. J., Serpe G., Olive D. M., King W. Novel, ultrasensitive, Q-beta replicase-amplified hybridization assay for detection of Chlamydia trachomatis. J Clin Microbiol. 1994 Nov;32(11):2718–2724. doi: 10.1128/jcm.32.11.2718-2724.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soini H., Skurnik M., Liippo K., Tala E., Viljanen M. K. Detection and identification of mycobacteria by amplification of a segment of the gene coding for the 32-kilodalton protein. J Clin Microbiol. 1992 Aug;30(8):2025–2028. doi: 10.1128/jcm.30.8.2025-2028.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Victor T., du Toit R., van Helden P. D. Purification of sputum samples through sucrose improves detection of Mycobacterium tuberculosis by polymerase chain reaction. J Clin Microbiol. 1992 Jun;30(6):1514–1517. doi: 10.1128/jcm.30.6.1514-1517.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]