Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Apr;33(4):987–989. doi: 10.1128/jcm.33.4.987-989.1995

Analysis of Salmonella enteritidis isolates by arbitrarily primed PCR.

A A Fadl 1, A V Nguyen 1, M I Khan 1
PMCID: PMC228081  PMID: 7790473

Abstract

An arbitrarily primed PCR (AP-PCR) was developed to analyze the genomic DNAs of Salmonella enteritidis isolates from human outbreaks and from avian sources. The AP-PCR generated seven distinct randomly amplified DNA patterns among the S. enteritidis isolates studied. Differences in the DNA patterns among isolates of S. enteritidis phage types 13a and 8 as well as among S. enteritidis phage type 14b were observed. The AP-PCR analysis can be used to determine the differences among isolates within the same phage types and may be useful for tracing back the source of S. enteritidis outbreaks in humans more precisely.

Full Text

The Full Text of this article is available as a PDF (187.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botstein D., White R. L., Skolnick M., Davis R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980 May;32(3):314–331. [PMC free article] [PubMed] [Google Scholar]
  2. Ellsworth D. L., Rittenhouse K. D., Honeycutt R. L. Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques. 1993 Feb;14(2):214–217. [PubMed] [Google Scholar]
  3. Martinetti G., Altwegg M. rRNA gene restriction patterns and plasmid analysis as a tool for typing Salmonella enteritidis. Res Microbiol. 1990 Nov-Dec;141(9):1151–1162. doi: 10.1016/0923-2508(90)90088-8. [DOI] [PubMed] [Google Scholar]
  4. Mayer L. W. Use of plasmid profiles in epidemiologic surveillance of disease outbreaks and in tracing the transmission of antibiotic resistance. Clin Microbiol Rev. 1988 Apr;1(2):228–243. doi: 10.1128/cmr.1.2.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Micheli M. R., Bova R., Calissano P., D'Ambrosio E. Randomly amplified polymorphic DNA fingerprinting using combinations of oligonucleotide primers. Biotechniques. 1993 Sep;15(3):388–390. [PubMed] [Google Scholar]
  6. Nguyen A. V., Khan M. I., Lu Z. Amplification of Salmonella chromosomal DNA using the polymerase chain reaction. Avian Dis. 1994 Jan-Mar;38(1):119–126. [PubMed] [Google Scholar]
  7. Rodrigue D. C., Cameron D. N., Puhr N. D., Brenner F. W., St Louis M. E., Wachsmuth I. K., Tauxe R. V. Comparison of plasmid profiles, phage types, and antimicrobial resistance patterns of Salmonella enteritidis isolates in the United States. J Clin Microbiol. 1992 Apr;30(4):854–857. doi: 10.1128/jcm.30.4.854-857.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rodrigue D. C., Tauxe R. V., Rowe B. International increase in Salmonella enteritidis: a new pandemic? Epidemiol Infect. 1990 Aug;105(1):21–27. doi: 10.1017/s0950268800047609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Shlaes D. M., Currie-McCumber C. A. Plasmid analysis in molecular epidemiology: a summary and future directions. Rev Infect Dis. 1986 Sep-Oct;8(5):738–746. doi: 10.1093/clinids/8.5.738. [DOI] [PubMed] [Google Scholar]
  10. Singer J. T., Opitz H. M., Gershman M., Hall M. M., Muniz I. G., Rao S. V. Molecular characterization of Salmonella enteritidis isolates from Maine poultry and poultry farm environments. Avian Dis. 1992 Apr-Jun;36(2):324–333. [PubMed] [Google Scholar]
  11. St Louis M. E., Morse D. L., Potter M. E., DeMelfi T. M., Guzewich J. J., Tauxe R. V., Blake P. A. The emergence of grade A eggs as a major source of Salmonella enteritidis infections. New implications for the control of salmonellosis. JAMA. 1988 Apr 8;259(14):2103–2107. [PubMed] [Google Scholar]
  12. Tate C. R., Miller R. G., Mallinson E. T., Douglass L. W., Johnston R. W. The isolation of salmonellae from poultry environmental samples by several enrichment procedures using plating media with and without novobiocin. Poult Sci. 1990 May;69(5):721–726. doi: 10.3382/ps.0690721. [DOI] [PubMed] [Google Scholar]
  13. Thomas R. D. Grade A eggs as a source of Salmonella enteritidis infections. JAMA. 1989 Apr 14;261(14):2064–2065. [PubMed] [Google Scholar]
  14. Threlfall E. J., Chart H., Ward L. R., de Sa J. D., Rowe B. Interrelationships between strains of Salmonella enteritidis belonging to phage types 4, 7, 7a, 8, 13, 13a, 23, 24 and 30. J Appl Bacteriol. 1993 Jul;75(1):43–48. doi: 10.1111/j.1365-2672.1993.tb03405.x. [DOI] [PubMed] [Google Scholar]
  15. Tompkins L. S., Troup N., Labigne-Roussel A., Cohen M. L. Cloned, random chromosomal sequences as probes to identify Salmonella species. J Infect Dis. 1986 Jul;154(1):156–162. doi: 10.1093/infdis/154.1.156. [DOI] [PubMed] [Google Scholar]
  16. Ward L. R., de Sa J. D., Rowe B. A phage-typing scheme for Salmonella enteritidis. Epidemiol Infect. 1987 Oct;99(2):291–294. doi: 10.1017/s0950268800067765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Welsh J., McClelland M. Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucleic Acids Res. 1991 Oct 11;19(19):5275–5279. doi: 10.1093/nar/19.19.5275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES