Abstract
Members of the genus Acinetobacter are reported to be involved in hospital-acquired infections with an increasing frequency. However, clinical laboratories still lack simple methods that allow complete identification of some pathogenic species, i.e., those corresponding to A. baumannii (DNA group or genospecies 2), unnamed genospecies 3 and 13, and two new genospecies that have recently been described. In fact, a complete discrimination between these species is possible only by DNA-DNA hybridization or ribotyping. Both of these techniques are complex and time-consuming and cannot be performed in most clinical laboratories. As a consequence, isolates belonging to these genospecies are often not differentiated and included, together with the environmental genospecies 1, in the A. calcoaceticus-A. baumannii complex. In this report, a simple and rapid method for the identification of the genospecies belonging to the A. calcoaceticus-A. baumannii complex is proposed. It is based on the combined digestion by the restriction endonuclease AluI and NdeII of the DNA fragments resulting from the amplification of the 16S-23S rRNA intergenic spacer sequences. The analysis of 36 strains characterized by DNA-DNA hybridization in previous studies showed that the restriction profiles obtained are highly reproducible and characteristic for each genospecies. Moreover, extending this study to 68 clinical strains, which were assigned to the A. calcoaceticus-A. baumannii complex by phenotypic tests, confirmed the existence of a panel of limited and well-conserved restriction patterns and allowed the identification of the strains tested.(ABSTRACT TRUNCATED AT 250 WORDS)
Full Text
The Full Text of this article is available as a PDF (244.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barry T., Colleran G., Glennon M., Dunican L. K., Gannon F. The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl. 1991 Aug;1(1):51–56. doi: 10.1101/gr.1.1.51. [DOI] [PubMed] [Google Scholar]
- Bergogne-Bérézin E., Joly-Guillou M. L., Vieu J. F. Epidemiology of nosocomial infections due to Acinetobacter calcoaceticus. J Hosp Infect. 1987 Sep;10(2):105–113. doi: 10.1016/0195-6701(87)90135-6. [DOI] [PubMed] [Google Scholar]
- Bouvet P. J., Grimont P. A. Identification and biotyping of clinical isolates of Acinetobacter. Ann Inst Pasteur Microbiol. 1987 Sep-Oct;138(5):569–578. doi: 10.1016/0769-2609(87)90042-1. [DOI] [PubMed] [Google Scholar]
- Bouvet P. J., Jeanjean S. Delineation of new proteolytic genomic species in the genus Acinetobacter. Res Microbiol. 1989 May-Jun;140(4-5):291–299. doi: 10.1016/0923-2508(89)90021-1. [DOI] [PubMed] [Google Scholar]
- Dijkshoorn L., Aucken H. M., Gerner-Smidt P., Kaufmann M. E., Ursing J., Pitt T. L. Correlation of typing methods for Acinetobacter isolates from hospital outbreaks. J Clin Microbiol. 1993 Mar;31(3):702–705. doi: 10.1128/jcm.31.3.702-705.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dijkshoorn L., van der Toorn J. Acinetobacter species: which do we mean? Clin Infect Dis. 1992 Oct;15(4):748–749. doi: 10.1093/clind/15.4.748. [DOI] [PubMed] [Google Scholar]
- Dolzani L., Tonin E., Lagatolla C., Monti-Bragadin C. Typing of Staphylococcus aureus by amplification of the 16S-23S rRNA intergenic spacer sequences. FEMS Microbiol Lett. 1994 Jun 1;119(1-2):167–173. doi: 10.1111/j.1574-6968.1994.tb06884.x. [DOI] [PubMed] [Google Scholar]
- Gerner-Smidt P. Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Clin Microbiol. 1992 Oct;30(10):2680–2685. doi: 10.1128/jcm.30.10.2680-2685.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerner-Smidt P., Tjernberg I. Acinetobacter in Denmark: II. Molecular studies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. APMIS. 1993 Nov;101(11):826–832. [PubMed] [Google Scholar]
- Gerner-Smidt P., Tjernberg I., Ursing J. Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol. 1991 Feb;29(2):277–282. doi: 10.1128/jcm.29.2.277-282.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen M. A., Webster J. A., Straus N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol. 1993 Apr;59(4):945–952. doi: 10.1128/aem.59.4.945-952.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joly-Guillou M. L., Bergogne-Berezin E., Vieu J. F. Epidémiologie et résistance aux antibiotiques des Acinetobacter en milieu hospitalier. Bilan de 5 années. Presse Med. 1990 Mar 3;19(8):357–361. [PubMed] [Google Scholar]
- Kostman J. R., Edlind T. D., LiPuma J. J., Stull T. L. Molecular epidemiology of Pseudomonas cepacia determined by polymerase chain reaction ribotyping. J Clin Microbiol. 1992 Aug;30(8):2084–2087. doi: 10.1128/jcm.30.8.2084-2087.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kämpfer P., Tjernberg I., Ursing J. Numerical classification and identification of Acinetobacter genomic species. J Appl Bacteriol. 1993 Sep;75(3):259–268. doi: 10.1111/j.1365-2672.1993.tb02775.x. [DOI] [PubMed] [Google Scholar]
- Srivastava A. K., Schlessinger D. Mechanism and regulation of bacterial ribosomal RNA processing. Annu Rev Microbiol. 1990;44:105–129. doi: 10.1146/annurev.mi.44.100190.000541. [DOI] [PubMed] [Google Scholar]
- Tjernberg I., Ursing J. Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS. 1989 Jul;97(7):595–605. doi: 10.1111/j.1699-0463.1989.tb00449.x. [DOI] [PubMed] [Google Scholar]