Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 May;33(5):1169–1173. doi: 10.1128/jcm.33.5.1169-1173.1995

Expression of human papillomavirus type 16 E6-E7 open reading frame varies quantitatively in biopsy tissue from different grades of cervical intraepithelial neoplasia.

P McNicol 1, F Guijon 1, S Wayne 1, R Hidajat 1, M Paraskevas 1
PMCID: PMC228125  PMID: 7615724

Abstract

The proteins encoded by the human papillomavirus type 16 E6-E7 open reading frame are essential for transformation of the host cell. Two mRNA species, E6*I and E6*II, generated by alternative splicing of a polycistronic pre-mRNA, encode truncated E6 proteins and the E7 protein. Our investigation assessed whether or not the level of expression of E6*I and E6*II varies quantitatively in relation to the grade of cervical intraepithelial neoplasia (CIN). We used a quantitative reverse transcription PCR assay to quantify these transcripts in concurrently collected biopsy tissue and exfoliated cervical cells from 22 women with a normal cervix or various grades of CIN. We evaluated transcription profiles in relation to CIN grade and specimen type. The expression levels of E6*I and E6*II in exfoliated cervical cells did not vary significantly in relation to the grade of CIN. However, expression of E6*II was significantly diminished or absent in biopsy tissue obtained from CIN grade II and III lesions (P = 0.014). Our findings suggest that quantification of E6*I and E6*II expression in biopsy tissue may be more clinically relevant than analysis of exfoliated cells. The identification of distinct patterns of expression in association with low- and high-grade CIN suggests that quantification of E6*I and E6*II expression in biopsy tissue may have prognostic value as an indicator of CIN progression.

Full Text

The Full Text of this article is available as a PDF (247.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Androphy E. J., Hubbert N. L., Schiller J. T., Lowy D. R. Identification of the HPV-16 E6 protein from transformed mouse cells and human cervical carcinoma cell lines. EMBO J. 1987 Apr;6(4):989–992. doi: 10.1002/j.1460-2075.1987.tb04849.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arcari P., Martinelli R., Salvatore F. The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA species. Nucleic Acids Res. 1984 Dec 11;12(23):9179–9189. doi: 10.1093/nar/12.23.9179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker C. C., Phelps W. C., Lindgren V., Braun M. J., Gonda M. A., Howley P. M. Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol. 1987 Apr;61(4):962–971. doi: 10.1128/jvi.61.4.962-971.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Böhm S., Wilczynski S. P., Pfister H., Iftner T. The predominant mRNA class in HPV16-infected genital neoplasias does not encode the E6 or the E7 protein. Int J Cancer. 1993 Nov 11;55(5):791–798. doi: 10.1002/ijc.2910550517. [DOI] [PubMed] [Google Scholar]
  5. Cornelissen M. T., Smits H. L., Briët M. A., van den Tweel J. G., Struyk A. P., van der Noordaa J., ter Schegget J. Uniformity of the splicing pattern of the E6/E7 transcripts in human papillomavirus type 16-transformed human fibroblasts, human cervical premalignant lesions and carcinomas. J Gen Virol. 1990 May;71(Pt 5):1243–1246. doi: 10.1099/0022-1317-71-5-1243. [DOI] [PubMed] [Google Scholar]
  6. Doorbar J., Parton A., Hartley K., Banks L., Crook T., Stanley M., Crawford L. Detection of novel splicing patterns in a HPV16-containing keratinocyte cell line. Virology. 1990 Sep;178(1):254–262. doi: 10.1016/0042-6822(90)90401-c. [DOI] [PubMed] [Google Scholar]
  7. Falcinelli C., Claas E., Kleter B., Quint W. G. Detection of the human papilloma virus type 16 mRNA-transcripts in cytological abnormal scrapings. J Med Virol. 1992 Jun;37(2):93–98. doi: 10.1002/jmv.1890370204. [DOI] [PubMed] [Google Scholar]
  8. Falcinelli C., van Belkum A., Schrauwen L., Seldenrijk K., Quint W. G. Absence of human papillomavirus type 16 E6 transcripts in HPV 16-infected, cytologically normal cervical scrapings. J Med Virol. 1993 Aug;40(4):261–265. doi: 10.1002/jmv.1890400402. [DOI] [PubMed] [Google Scholar]
  9. Golde T. E., Estus S., Usiak M., Younkin L. H., Younkin S. G. Expression of beta amyloid protein precursor mRNAs: recognition of a novel alternatively spliced form and quantitation in Alzheimer's disease using PCR. Neuron. 1990 Feb;4(2):253–267. doi: 10.1016/0896-6273(90)90100-t. [DOI] [PubMed] [Google Scholar]
  10. Horikoshi T., Danenberg K. D., Stadlbauer T. H., Volkenandt M., Shea L. C., Aigner K., Gustavsson B., Leichman L., Frösing R., Ray M. Quantitation of thymidylate synthase, dihydrofolate reductase, and DT-diaphorase gene expression in human tumors using the polymerase chain reaction. Cancer Res. 1992 Jan 1;52(1):108–116. [PubMed] [Google Scholar]
  11. Hsu E. M., McNicol P. J., Guijon F. B., Paraskevas M. Quantification of HPV-16 E6-E7 transcription in cervical intraepithelial neoplasia by reverse transcriptase polymerase chain reaction. Int J Cancer. 1993 Sep 30;55(3):397–401. doi: 10.1002/ijc.2910550311. [DOI] [PubMed] [Google Scholar]
  12. Johnson M. A., Blomfield P. I., Bevan I. S., Woodman C. B., Young L. S. Analysis of human papillomavirus type 16 E6-E7 transcription in cervical carcinomas and normal cervical epithelium using the polymerase chain reaction. J Gen Virol. 1990 Jul;71(Pt 7):1473–1479. doi: 10.1099/0022-1317-71-7-1473. [DOI] [PubMed] [Google Scholar]
  13. Kozak M. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol. 1987 Oct;7(10):3438–3445. doi: 10.1128/mcb.7.10.3438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lörincz A. T., Temple G. F., Patterson J. A., Jenson A. B., Kurman R. J., Lancaster W. D. Correlation of cellular atypia and human papillomavirus deoxyribonucleic acid sequences in exfoliated cells of the uterine cervix. Obstet Gynecol. 1986 Oct;68(4):508–512. [PubMed] [Google Scholar]
  15. McNicol P. J., Dodd J. G. Detection of human papillomavirus DNA in prostate gland tissue by using the polymerase chain reaction amplification assay. J Clin Microbiol. 1990 Mar;28(3):409–412. doi: 10.1128/jcm.28.3.409-412.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rose B. R., Jiang X. M., Thompson C. H., Tattersall M. H., Cossart Y. E. Detection of human papillomavirus type 16 E6/E7 transcripts in fixed paraffin-embedded cervical cancers by the polymerase chain reaction. J Virol Methods. 1991 Dec;35(3):305–313. doi: 10.1016/0166-0934(91)90072-8. [DOI] [PubMed] [Google Scholar]
  17. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  18. Schwarz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985 Mar 7;314(6006):111–114. doi: 10.1038/314111a0. [DOI] [PubMed] [Google Scholar]
  19. Sherman L., Alloul N., Golan I., Durst M., Baram A. Expression and splicing patterns of human papillomavirus type-16 mRNAs in pre-cancerous lesions and carcinomas of the cervix, in human keratinocytes immortalized by HPV 16, and in cell lines established from cervical cancers. Int J Cancer. 1992 Feb 1;50(3):356–364. doi: 10.1002/ijc.2910500305. [DOI] [PubMed] [Google Scholar]
  20. Shirasawa H., Tanzawa H., Matsunaga T., Simizu B. Quantitative detection of spliced E6-E7 transcripts of human papillomavirus type 16 in cervical premalignant lesions. Virology. 1991 Oct;184(2):795–798. doi: 10.1016/0042-6822(91)90455-k. [DOI] [PubMed] [Google Scholar]
  21. Smotkin D., Prokoph H., Wettstein F. O. Oncogenic and nononcogenic human genital papillomaviruses generate the E7 mRNA by different mechanisms. J Virol. 1989 Mar;63(3):1441–1447. doi: 10.1128/jvi.63.3.1441-1447.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smotkin D., Wettstein F. O. Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4680–4684. doi: 10.1073/pnas.83.13.4680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Woodworth C. D., Cheng S., Simpson S., Hamacher L., Chow L. T., Broker T. R., DiPaolo J. A. Recombinant retroviruses encoding human papillomavirus type 18 E6 and E7 genes stimulate proliferation and delay differentiation of human keratinocytes early after infection. Oncogene. 1992 Apr;7(4):619–626. [PubMed] [Google Scholar]
  24. de Villiers E. M. Heterogeneity of the human papillomavirus group. J Virol. 1989 Nov;63(11):4898–4903. doi: 10.1128/jvi.63.11.4898-4903.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES