Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 May;33(5):1292–1295. doi: 10.1128/jcm.33.5.1292-1295.1995

Detection of Salmonella typhimurium from rectal swabs of experimentally infected beagles by short cultivation and PCR-hybridization.

G G Stone 1, R D Oberst 1, M P Hays 1, S McVey 1, J C Galland 1, R Curtiss 3rd 1, S M Kelly 1, M M Chengappa 1
PMCID: PMC228148  PMID: 7615744

Abstract

A rapid and sensitive cultivation and PCR-hybridization procedure for the detection and identification of Salmonella typhimurium was evaluated over a 42-day period with eight experimentally infected beagles. Rectal swabs were taken at several times postinfection, inoculated into selenite-cystine broth, and plated onto Hektoen-Enteric Enteric agar immediately after incubation for 4 and 24 h. PCRs and hybridizations were also conducted with each sample, and the results were compared with those of standard culture techniques to evaluate the efficiency of the PCR-hybridization procedure. The PCR-hybridization procedure was more sensitive than standard culture techniques at each enrichment incubation (P < 0.05). In addition, the PCR-hybridization procedure was significantly better than culture up through 3 days postinfection (P < 0.05). A nonspecific amplified product, relatively close in size to the 457-bp specifically amplified product, did not hybridize to an internal oligonucleotide probe or to a random-primed labeled probe. Subsequent sequence information revealed that the product had very little similarity to the 457-bp product but had significant similarity to an Escherichia coli aldehyde dehydrogenase gene. This study indicated that a cultivation and PCR-hybridization procedure is significantly better than culture for the identification of S. typhimurium. Additionally, the results confirm the importance of determining specificities of PCR products beyond the gel electrophoresis level by hybridization with a specific probe.

Full Text

The Full Text of this article is available as a PDF (263.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Araj G. F., Chugh T. D. Detection of Salmonella spp. in clinical specimens by capture enzyme-linked immunosorbent assay. J Clin Microbiol. 1987 Nov;25(11):2150–2153. doi: 10.1128/jcm.25.11.2150-2153.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bej A. K., Mahbubani M. H., Boyce M. J., Atlas R. M. Detection of Salmonella spp. in oysters by PCR. Appl Environ Microbiol. 1994 Jan;60(1):368–373. doi: 10.1128/aem.60.1.368-373.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Curiale M. S., Klatt M. J., Mozola M. A. Colorimetric deoxyribonucleic acid hybridization assay for rapid screening of Salmonella in foods: collaborative study. J Assoc Off Anal Chem. 1990 Mar-Apr;73(2):248–256. [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Galán J. E., Curtiss R., 3rd Virulence and vaccine potential of phoP mutants of Salmonella typhimurium. Microb Pathog. 1989 Jun;6(6):433–443. doi: 10.1016/0882-4010(89)90085-5. [DOI] [PubMed] [Google Scholar]
  7. Galán J. E., Ginocchio C., Costeas P. Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. J Bacteriol. 1992 Jul;174(13):4338–4349. doi: 10.1128/jb.174.13.4338-4349.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ginocchio C., Pace J., Galán J. E. Identification and molecular characterization of a Salmonella typhimurium gene involved in triggering the internalization of salmonellae into cultured epithelial cells. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5976–5980. doi: 10.1073/pnas.89.13.5976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gopo J. M., Melis R., Filipska E., Meneveri R., Filipski J. Development of a Salmonella-specific biotinylated DNA probe for rapid routine identification of Salmonella. Mol Cell Probes. 1988 Dec;2(4):271–279. doi: 10.1016/0890-8508(88)90011-4. [DOI] [PubMed] [Google Scholar]
  10. Gulig P. A., Curtiss R., 3rd Plasmid-associated virulence of Salmonella typhimurium. Infect Immun. 1987 Dec;55(12):2891–2901. doi: 10.1128/iai.55.12.2891-2901.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heim R., Strehler E. E. Cloning an Escherichia coli gene encoding a protein remarkably similar to mammalian aldehyde dehydrogenases. Gene. 1991 Mar 1;99(1):15–23. doi: 10.1016/0378-1119(91)90028-a. [DOI] [PubMed] [Google Scholar]
  12. Kier L. D., Weppelman R. M., Ames B. N. Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes. J Bacteriol. 1979 Apr;138(1):155–161. doi: 10.1128/jb.138.1.155-161.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lockman H. A., Curtiss R., 3rd Occurrence of secondary attenuating mutations in avirulent Salmonella typhimurium vaccine strains. J Infect Dis. 1990 Dec;162(6):1397–1400. doi: 10.1093/infdis/162.6.1397. [DOI] [PubMed] [Google Scholar]
  14. Maloy S. R., Nunn W. D. Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol. 1981 Feb;145(2):1110–1111. doi: 10.1128/jb.145.2.1110-1111.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rigby C. E. Enzyme-linked immunosorbent assay for detection of Salmonella lipopolysaccharide in poultry specimens. Appl Environ Microbiol. 1984 Jun;47(6):1327–1330. doi: 10.1128/aem.47.6.1327-1330.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rossen L., Nørskov P., Holmstrøm K., Rasmussen O. F. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol. 1992 Sep;17(1):37–45. doi: 10.1016/0168-1605(92)90017-w. [DOI] [PubMed] [Google Scholar]
  17. SCHNEIDER H. A., ZINDER N. D. Nutrition of the host and natural resistance to infection. V. An improved assay employing genetic markers in the double strain inoculation test. J Exp Med. 1956 Feb 1;103(2):207–223. doi: 10.1084/jem.103.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smeltzer M. S., Gill S. R., Iandolo J. J. Localization of a chromosomal mutation affecting expression of extracellular lipase in Staphylococcus aureus. J Bacteriol. 1992 Jun;174(12):4000–4006. doi: 10.1128/jb.174.12.4000-4006.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stone G. G., Oberst R. D., Hays M. P., McVey S., Chengappa M. M. Detection of Salmonella serovars from clinical samples by enrichment broth cultivation-PCR procedure. J Clin Microbiol. 1994 Jul;32(7):1742–1749. doi: 10.1128/jcm.32.7.1742-1749.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Widjojoatmodjo M. N., Fluit A. C., Torensma R., Keller B. H., Verhoef J. Evaluation of the magnetic immuno PCR assay for rapid detection of Salmonella. Eur J Clin Microbiol Infect Dis. 1991 Nov;10(11):935–938. doi: 10.1007/BF02005447. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES