Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Jun;33(6):1558–1561. doi: 10.1128/jcm.33.6.1558-1561.1995

Ethanol fixation of sputum sediments for DNA-based detection of Mycobacterium tuberculosis.

D L Williams 1, T P Gillis 1, W G Dupree 1
PMCID: PMC228215  PMID: 7650186

Abstract

The effect of ethanol fixation on PCR detection and viability of Mycobacterium tuberculosis in human sputum sediments was evaluated. M. tuberculosis seeded into sputum sediments was efficiently killed when treated for 1 h with 50, 70, or 95% ethanol. PCR amplification of a 123-bp fragment of the M. tuberculosis-specific IS6110 was not affected in ethanol-treated samples even when fixation was extended to 24 h. Ethanol fixation of sputum sediments did not affect the PCR detection of M. tuberculosis in clinical samples. PCR results from ethanol-treated clinical samples containing M. tuberculosis (smear positive and smear negative) or other respiratory pathogens correlated directly with the results by conventional detection methods for M. tuberculosis. Our results show that ethanol fixation of human sputum sediments containing M. tuberculosis significantly reduces the potential exposure of workers to viable M. tuberculosis without affecting DNA analysis by PCR. Also, ethanol fixation of sputum sediments provides a simple and inexpensive way to store and transport clinical specimens identified for DNA-based diagnostics without refrigeration.

Full Text

The Full Text of this article is available as a PDF (456.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Best M., Sattar S. A., Springthorpe V. S., Kennedy M. E. Efficacies of selected disinfectants against Mycobacterium tuberculosis. J Clin Microbiol. 1990 Oct;28(10):2234–2239. doi: 10.1128/jcm.28.10.2234-2239.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eisenach K. D., Cave M. D., Bates J. H., Crawford J. T. Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis. 1990 May;161(5):977–981. doi: 10.1093/infdis/161.5.977. [DOI] [PubMed] [Google Scholar]
  3. Fiallo P., Williams D. L., Chan G. P., Gillis T. P. Effects of fixation on polymerase chain reaction detection of Mycobacterium leprae. J Clin Microbiol. 1992 Dec;30(12):3095–3098. doi: 10.1128/jcm.30.12.3095-3098.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Frieden T. R., Sterling T., Pablos-Mendez A., Kilburn J. O., Cauthen G. M., Dooley S. W. The emergence of drug-resistant tuberculosis in New York City. N Engl J Med. 1993 Feb 25;328(8):521–526. doi: 10.1056/NEJM199302253280801. [DOI] [PubMed] [Google Scholar]
  5. Jonas V., Alden M. J., Curry J. I., Kamisango K., Knott C. A., Lankford R., Wolfe J. M., Moore D. F. Detection and identification of Mycobacterium tuberculosis directly from sputum sediments by amplification of rRNA. J Clin Microbiol. 1993 Sep;31(9):2410–2416. doi: 10.1128/jcm.31.9.2410-2416.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kocagöz T., Yilmaz E., Ozkara S., Kocagöz S., Hayran M., Sachedeva M., Chambers H. F. Detection of Mycobacterium tuberculosis in sputum samples by polymerase chain reaction using a simplified procedure. J Clin Microbiol. 1993 Jun;31(6):1435–1438. doi: 10.1128/jcm.31.6.1435-1438.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lind A., Lundholm M., Pedersen G., Sundaeus V., Wåhlén P. A carrier method for the assessment of the effectiveness of disinfectants against Mycobacterium tuberculosis. J Hosp Infect. 1986 Jan;7(1):60–67. doi: 10.1016/0195-6701(86)90027-7. [DOI] [PubMed] [Google Scholar]
  8. Pfyffer G. E., Kissling P., Wirth R., Weber R. Direct detection of Mycobacterium tuberculosis complex in respiratory specimens by a target-amplified test system. J Clin Microbiol. 1994 Apr;32(4):918–923. doi: 10.1128/jcm.32.4.918-923.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Russell A. D., Hammond S. A., Morgan J. R. Bacterial resistance to antiseptics and disinfectants. J Hosp Infect. 1986 May;7(3):213–225. doi: 10.1016/0195-6701(86)90071-x. [DOI] [PubMed] [Google Scholar]
  10. Rutala W. A. Draft guideline for selection and use of disinfectants. Am J Infect Control. 1989 Feb;17(1):24A–38A. doi: 10.1016/s0196-6553(89)80005-7. [DOI] [PubMed] [Google Scholar]
  11. Shawar R. M., el-Zaatari F. A., Nataraj A., Clarridge J. E. Detection of Mycobacterium tuberculosis in clinical samples by two-step polymerase chain reaction and nonisotopic hybridization methods. J Clin Microbiol. 1993 Jan;31(1):61–65. doi: 10.1128/jcm.31.1.61-65.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
  13. Williams D. L., Waguespack C., Eisenach K., Crawford J. T., Portaels F., Salfinger M., Nolan C. M., Abe C., Sticht-Groh V., Gillis T. P. Characterization of rifampin-resistance in pathogenic mycobacteria. Antimicrob Agents Chemother. 1994 Oct;38(10):2380–2386. doi: 10.1128/aac.38.10.2380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Zwadyk P., Jr, Down J. A., Myers N., Dey M. S. Rendering of mycobacteria safe for molecular diagnostic studies and development of a lysis method for strand displacement amplification and PCR. J Clin Microbiol. 1994 Sep;32(9):2140–2146. doi: 10.1128/jcm.32.9.2140-2146.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES