Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Jun;33(6):1617–1623. doi: 10.1128/jcm.33.6.1617-1623.1995

Genotypic detection of Mycobacterium tuberculosis rifampin resistance: comparison of single-strand conformation polymorphism and dideoxy fingerprinting.

T A Felmlee 1, Q Liu 1, A C Whelen 1, D Williams 1, S S Sommer 1, D H Persing 1
PMCID: PMC228227  PMID: 7650198

Abstract

Detection of mutations in the rpoB gene of Mycobacterium tuberculosis can be used as an accurate predictor of rifampin resistance in the majority of strains tested. Simple but highly accurate screening methods must be developed for the detection of these mutations. Either DNA sequence analysis or single-strand conformation polymorphism (SSCP) screening can be used to detect rpoB mutations, but these techniques either are expensive or yield results that may prove difficult to interpret when used in a clinical setting. This report describes the use of dideoxy fingerprinting (ddF) as a postamplification screening method to identify rifampin-resistant genotypes. The ddF protocol was performed on the amplified rpoB fragment with no preparatory steps, thus making ddF practical for laboratories equipped for polyacrylamide gel electrophoresis. When compared with the results of SSCP analysis, ddF results were more easily interpreted and contained more sequence-dependent information that facilitated differentiation of functionally significant and silent mutations. The ddF method was used for genotypic determination of rifampin susceptibility of 20 multidrug-resistant strains of M. tuberculosis. The results of this analysis were concordant with DNA sequence analysis and conventional clinical laboratory methods.

Full Text

The Full Text of this article is available as a PDF (840.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloch A. B., Cauthen G. M., Onorato I. M., Dansbury K. G., Kelly G. D., Driver C. R., Snider D. E., Jr Nationwide survey of drug-resistant tuberculosis in the United States. JAMA. 1994 Mar 2;271(9):665–671. [PubMed] [Google Scholar]
  2. Hayashi K., Yandell D. W. How sensitive is PCR-SSCP? Hum Mutat. 1993;2(5):338–346. doi: 10.1002/humu.1380020503. [DOI] [PubMed] [Google Scholar]
  3. Hunt J. M., Roberts G. D., Stockman L., Felmlee T. A., Persing D. H. Detection of a genetic locus encoding resistance to rifampin in mycobacterial cultures and in clinical specimens. Diagn Microbiol Infect Dis. 1994 Apr;18(4):219–227. doi: 10.1016/0732-8893(94)90024-8. [DOI] [PubMed] [Google Scholar]
  4. Jin D. J., Gross C. A. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol. 1988 Jul 5;202(1):45–58. doi: 10.1016/0022-2836(88)90517-7. [DOI] [PubMed] [Google Scholar]
  5. Kapur V., Li L. L., Iordanescu S., Hamrick M. R., Wanger A., Kreiswirth B. N., Musser J. M. Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol. 1994 Apr;32(4):1095–1098. doi: 10.1128/jcm.32.4.1095-1098.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Liu Q., Sommer S. S. Parameters affecting the sensitivities of dideoxy fingerprinting and SSCP. PCR Methods Appl. 1994 Oct;4(2):97–108. doi: 10.1101/gr.4.2.97. [DOI] [PubMed] [Google Scholar]
  7. Rys P. N., Persing D. H. Preventing false positives: quantitative evaluation of three protocols for inactivation of polymerase chain reaction amplification products. J Clin Microbiol. 1993 Sep;31(9):2356–2360. doi: 10.1128/jcm.31.9.2356-2360.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sarkar G., Yoon H. S., Sommer S. S. Dideoxy fingerprinting (ddE): a rapid and efficient screen for the presence of mutations. Genomics. 1992 Jun;13(2):441–443. doi: 10.1016/0888-7543(92)90266-u. [DOI] [PubMed] [Google Scholar]
  9. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
  10. Telenti A., Imboden P., Marchesi F., Schmidheini T., Bodmer T. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother. 1993 Oct;37(10):2054–2058. doi: 10.1128/aac.37.10.2054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Whelen A. C., Felmlee T. A., Hunt J. M., Williams D. L., Roberts G. D., Stockman L., Persing D. H. Direct genotypic detection of Mycobacterium tuberculosis rifampin resistance in clinical specimens by using single-tube heminested PCR. J Clin Microbiol. 1995 Mar;33(3):556–561. doi: 10.1128/jcm.33.3.556-561.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Williams D. L., Waguespack C., Eisenach K., Crawford J. T., Portaels F., Salfinger M., Nolan C. M., Abe C., Sticht-Groh V., Gillis T. P. Characterization of rifampin-resistance in pathogenic mycobacteria. Antimicrob Agents Chemother. 1994 Oct;38(10):2380–2386. doi: 10.1128/aac.38.10.2380. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES