Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Jul;33(7):1793–1796. doi: 10.1128/jcm.33.7.1793-1796.1995

Transport and storage conditions for cultural recovery of Chlamydia pneumoniae.

M Maass 1, K Dalhoff 1
PMCID: PMC228272  PMID: 7665648

Abstract

Chlamydia pneumoniae is characterized by rapidly decreasing viability outside the host cell, and efficient preservation of its infectivity is a prerequisite for subsequent cell culture recovery. Extracellular survival of three C. pneumoniae stock strains and three wild-type strains subjected to simulated conditions of transport was therefore examined in order to establish recommendations for transport and storage of clinical specimens. The presence of fetal calf serum in transport media as well as refrigeration distinctly improved chlamydial retrieval during prolonged transport. Loss of infectivity was kept to a minimum in Eagle's minimal essential medium or sucrose-phosphate-glutamine medium. Storage at 22 degrees C permitted a stock strain recovery of 81% after 12 h. When refrigeration to 4 degrees C was provided, recovery rates of 74% could be achieved after 48 h. Though the strains were from different geographic regions, requirements for good survival were comparable and should therefore apply worldwide. The results indicate that the laboratory strains are not extremely labile. However, comparative examination of the wild-type strains showed less stability: primary isolates were not satisfactorily retrievable beyond 4 h at 22 degrees C or beyond 24 h at 4 degrees C. Further extension of storage times resulted in rapidly decreasing recovery, indicating a requirement to freeze samples at -75 degrees C to preserve viability. Adherence to the shorter storage periods suggested by the data obtained with primary isolates is recommended to ensure successful transport until more extensive testing with clinical materials is available.

Full Text

The Full Text of this article is available as a PDF (191.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldous M. B., Grayston J. T., Wang S. P., Foy H. M. Seroepidemiology of Chlamydia pneumoniae TWAR infection in Seattle families, 1966-1979. J Infect Dis. 1992 Sep;166(3):646–649. doi: 10.1093/infdis/166.3.646. [DOI] [PubMed] [Google Scholar]
  2. BOVARNICK M. R., MILLER J. C., SNYDER J. C. The influence of certain salts, amino acids, sugars, and proteins on the stability of rickettsiae. J Bacteriol. 1950 Apr;59(4):509–522. doi: 10.1128/jb.59.4.509-522.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell L. A., Perez Melgosa M., Hamilton D. J., Kuo C. C., Grayston J. T. Detection of Chlamydia pneumoniae by polymerase chain reaction. J Clin Microbiol. 1992 Feb;30(2):434–439. doi: 10.1128/jcm.30.2.434-439.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chirgwin K., Roblin P. M., Gelling M., Hammerschlag M. R., Schachter J. Infection with Chlamydia pneumoniae in Brooklyn. J Infect Dis. 1991 Apr;163(4):757–761. doi: 10.1093/infdis/163.4.757. [DOI] [PubMed] [Google Scholar]
  5. Gaydos C. A., Fowler C. L., Gill V. J., Eiden J. J., Quinn T. C. Detection of Chlamydia pneumoniae by polymerase chain reaction-enzyme immunoassay in an immunocompromised population. Clin Infect Dis. 1993 Oct;17(4):718–723. doi: 10.1093/clinids/17.4.718. [DOI] [PubMed] [Google Scholar]
  6. Grayston J. T. Infections caused by Chlamydia pneumoniae strain TWAR. Clin Infect Dis. 1992 Nov;15(5):757–761. doi: 10.1093/clind/15.5.757. [DOI] [PubMed] [Google Scholar]
  7. Grayston J. T., Kuo C. C., Wang S. P., Altman J. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med. 1986 Jul 17;315(3):161–168. doi: 10.1056/NEJM198607173150305. [DOI] [PubMed] [Google Scholar]
  8. Kuo C. C., Grayston J. T. Factors affecting viability and growth in HeLa 229 cells of Chlamydia sp. strain TWAR. J Clin Microbiol. 1988 May;26(5):812–815. doi: 10.1128/jcm.26.5.812-815.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maass M., Dalhoff K. Comparison of sample preparation methods for detection of Chlamydia pneumoniae in bronchoalveolar lavage fluid by PCR. J Clin Microbiol. 1994 Oct;32(10):2616–2619. doi: 10.1128/jcm.32.10.2616-2619.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maass M., Dalhoff K. Isolierung von Chlamydia pneumoniae bei atypischer Pneumonie. Dtsch Med Wochenschr. 1994 Oct 28;119(43):1462–1466. doi: 10.1055/s-2008-1058860. [DOI] [PubMed] [Google Scholar]
  11. Maass M., Essig A., Marre R., Henkel W. Growth in serum-free medium improves isolation of Chlamydia pneumoniae. J Clin Microbiol. 1993 Nov;31(11):3050–3052. doi: 10.1128/jcm.31.11.3050-3052.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maass M., Harig U. Evaluation of culture conditions used for isolation of Chlamydia pneumoniae. Am J Clin Pathol. 1995 Feb;103(2):141–148. doi: 10.1093/ajcp/103.2.141. [DOI] [PubMed] [Google Scholar]
  13. Ozanne G., Lefebvre J. Specificity of the microimmunofluorescence assay for the serodiagnosis of Chlamydia pneumoniae infections. Can J Microbiol. 1992 Nov;38(11):1185–1189. doi: 10.1139/m92-194. [DOI] [PubMed] [Google Scholar]
  14. Prentice M. J., Farrant J. Survival of chlamydiae after cooling to -196 degrees C. J Clin Microbiol. 1977 Jul;6(1):4–9. doi: 10.1128/jcm.6.1.4-9.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ridgway G. L., Moss V., Mumtaz G., Atia W., Emmerson A. M., Oriel J. D. Provision of a chlamydial culture service to a sexually transmitted diseases clinic. Br J Vener Dis. 1982 Aug;58(4):236–238. doi: 10.1136/sti.58.4.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roblin P. M., Dumornay W., Hammerschlag M. R. Use of HEp-2 cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol. 1992 Aug;30(8):1968–1971. doi: 10.1128/jcm.30.8.1968-1971.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Theunissen H. J., Lemmens-den Toom N. A., Burggraaf A., Stolz E., Michel M. F. Influence of temperature and relative humidity on the survival of Chlamydia pneumoniae in aerosols. Appl Environ Microbiol. 1993 Aug;59(8):2589–2593. doi: 10.1128/aem.59.8.2589-2593.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Theunissen J. J., Stolz E., Michel M. F. The effects of medium and rate of freezing on the survival of chlamydias after lyophilization. J Appl Bacteriol. 1993 Nov;75(5):473–477. doi: 10.1111/j.1365-2672.1993.tb02804.x. [DOI] [PubMed] [Google Scholar]
  19. Theunissen J. J., van Heijst B. Y., Wagenvoort J. H., Stolz E., Michel M. F. Factors influencing the infectivity of Chlamydia pneumoniae elementary bodies on HL cells. J Clin Microbiol. 1992 Jun;30(6):1388–1391. doi: 10.1128/jcm.30.6.1388-1391.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Van Renterghem L., Van den Abeele A. M., Claeys G., Plum J. Prevalence of antibodies to Chlamydia pneumoniae in a pediatric hospital population in Belgium. Eur J Clin Microbiol Infect Dis. 1990 May;9(5):347–349. doi: 10.1007/BF01973742. [DOI] [PubMed] [Google Scholar]
  21. Wong K. H., Skelton S. K., Chan Y. K. Efficient culture of Chlamydia pneumoniae with cell lines derived from the human respiratory tract. J Clin Microbiol. 1992 Jul;30(7):1625–1630. doi: 10.1128/jcm.30.7.1625-1630.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES