Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Jul;33(7):1856–1859. doi: 10.1128/jcm.33.7.1856-1859.1995

Direct detection of Mycobacterium tuberculosis complex in respiratory specimens by Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test and Roche Amplicor Mycobacterium Tuberculosis Test.

P Vuorinen 1, A Miettinen 1, R Vuento 1, O Hällström 1
PMCID: PMC228285  PMID: 7665659

Abstract

Two hundred and fifty-six sputum, bronchoalveolar lavage, and bronchial and tracheal aspirate specimens from 243 patients were tested for the presence of Mycobacterium tuberculosis complex by auramine fluorochrome staining, rRNA target amplification (Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test [AMTD]), and PCR (Roche Amplicor Mycobacterium Tuberculosis Test [Amplicor PCR]. The results were compared with those of conventional Löwenstein-Jensen tube culture and BACTEC radiometric liquid culture. A total of 26 specimens from 18 patients were culture positive for M. tuberculosis. In addition, seven specimens were positive by staining and by culture for other Mycobacterium species but negative by nucleic acid amplification methods and were not included in the comparison. When compared with that for culture, the sensitivities of the techniques were as follows: for staining, 80.8%; for Gen-Probe AMTD, 84.6%; and for Roche Amplicor PCR, 84.6%. The specificities were 99.1, 98.7, and 99.1%, respectively. After resolution of discrepant results by review of the patients' clinical data, 29 specimens from 21 patients were considered positive, and the overall sensitivities, specificities, and positive and negative predictive values were 89.7, 100, 100, and 98.7% for culture; 75.9, 99.5, 95.7, and 96.9% for staining; 86.2, 100, 100, and 98.2% for Gen-Probe AMTD; and 82.8, 100, 100, and 97.9% for Roche Amplicor PCR, respectively. It is concluded that both nucleic acid amplification methods are rapid, sensitive, and specific methods for the detection of M. tuberculosis in respiratory specimens.

Full Text

The Full Text of this article is available as a PDF (165.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe C., Hirano K., Wada M., Kazumi Y., Takahashi M., Fukasawa Y., Yoshimura T., Miyagi C., Goto S. Detection of Mycobacterium tuberculosis in clinical specimens by polymerase chain reaction and Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test. J Clin Microbiol. 1993 Dec;31(12):3270–3274. doi: 10.1128/jcm.31.12.3270-3274.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abe C., Hosojima S., Fukasawa Y., Kazumi Y., Takahashi M., Hirano K., Mori T. Comparison of MB-Check, BACTEC, and egg-based media for recovery of mycobacteria. J Clin Microbiol. 1992 Apr;30(4):878–881. doi: 10.1128/jcm.30.4.878-881.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bauwens J. E., Clark A. M., Stamm W. E. Diagnosis of Chlamydia trachomatis endocervical infections by a commercial polymerase chain reaction assay. J Clin Microbiol. 1993 Nov;31(11):3023–3027. doi: 10.1128/jcm.31.11.3023-3027.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clarridge J. E., 3rd, Shawar R. M., Shinnick T. M., Plikaytis B. B. Large-scale use of polymerase chain reaction for detection of Mycobacterium tuberculosis in a routine mycobacteriology laboratory. J Clin Microbiol. 1993 Aug;31(8):2049–2056. doi: 10.1128/jcm.31.8.2049-2056.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deneer H. G., Knight I. Inhibition of the polymerase chain reaction by mucolytic agents. Clin Chem. 1994 Jan;40(1):171–172. [PubMed] [Google Scholar]
  6. Evans K. D., Nakasone A. S., Sutherland P. A., de la Maza L. M., Peterson E. M. Identification of Mycobacterium tuberculosis and Mycobacterium avium-M. intracellulare directly from primary BACTEC cultures by using acridinium-ester-labeled DNA probes. J Clin Microbiol. 1992 Sep;30(9):2427–2431. doi: 10.1128/jcm.30.9.2427-2431.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Folgueira L., Delgado R., Palenque E., Noriega A. R. Detection of Mycobacterium tuberculosis DNA in clinical samples by using a simple lysis method and polymerase chain reaction. J Clin Microbiol. 1993 Apr;31(4):1019–1021. doi: 10.1128/jcm.31.4.1019-1021.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Forbes B. A., Hicks K. E. Direct detection of Mycobacterium tuberculosis in respiratory specimens in a clinical laboratory by polymerase chain reaction. J Clin Microbiol. 1993 Jul;31(7):1688–1694. doi: 10.1128/jcm.31.7.1688-1694.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jonas V., Alden M. J., Curry J. I., Kamisango K., Knott C. A., Lankford R., Wolfe J. M., Moore D. F. Detection and identification of Mycobacterium tuberculosis directly from sputum sediments by amplification of rRNA. J Clin Microbiol. 1993 Sep;31(9):2410–2416. doi: 10.1128/jcm.31.9.2410-2416.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Miller N., Hernandez S. G., Cleary T. J. Evaluation of Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test and PCR for direct detection of Mycobacterium tuberculosis in clinical specimens. J Clin Microbiol. 1994 Feb;32(2):393–397. doi: 10.1128/jcm.32.2.393-397.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nolte F. S., Metchock B., McGowan J. E., Jr, Edwards A., Okwumabua O., Thurmond C., Mitchell P. S., Plikaytis B., Shinnick T. Direct detection of Mycobacterium tuberculosis in sputum by polymerase chain reaction and DNA hybridization. J Clin Microbiol. 1993 Jul;31(7):1777–1782. doi: 10.1128/jcm.31.7.1777-1782.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Noordhoek G. T., Kolk A. H., Bjune G., Catty D., Dale J. W., Fine P. E., Godfrey-Faussett P., Cho S. N., Shinnick T., Svenson S. B. Sensitivity and specificity of PCR for detection of Mycobacterium tuberculosis: a blind comparison study among seven laboratories. J Clin Microbiol. 1994 Feb;32(2):277–284. doi: 10.1128/jcm.32.2.277-284.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pfaller M. A. Application of new technology to the detection, identification, and antimicrobial susceptibility testing of mycobacteria. Am J Clin Pathol. 1994 Mar;101(3):329–337. doi: 10.1093/ajcp/101.3.329. [DOI] [PubMed] [Google Scholar]
  14. Pfyffer G. E., Kissling P., Wirth R., Weber R. Direct detection of Mycobacterium tuberculosis complex in respiratory specimens by a target-amplified test system. J Clin Microbiol. 1994 Apr;32(4):918–923. doi: 10.1128/jcm.32.4.918-923.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tenover F. C., Crawford J. T., Huebner R. E., Geiter L. J., Horsburgh C. R., Jr, Good R. C. The resurgence of tuberculosis: is your laboratory ready? J Clin Microbiol. 1993 Apr;31(4):767–770. doi: 10.1128/jcm.31.4.767-770.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thierry D., Brisson-Noël A., Vincent-Lévy-Frébault V., Nguyen S., Guesdon J. L., Gicquel B. Characterization of a Mycobacterium tuberculosis insertion sequence, IS6110, and its application in diagnosis. J Clin Microbiol. 1990 Dec;28(12):2668–2673. doi: 10.1128/jcm.28.12.2668-2673.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wilson S. M., McNerney R., Nye P. M., Godfrey-Faussett P. D., Stoker N. G., Voller A. Progress toward a simplified polymerase chain reaction and its application to diagnosis of tuberculosis. J Clin Microbiol. 1993 Apr;31(4):776–782. doi: 10.1128/jcm.31.4.776-782.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wolinsky E. Statement of the Tuberculosis Committee of the Infectious Diseases Society of America. Clin Infect Dis. 1993 May;16(5):627–628. doi: 10.1093/clind/16.5.627. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES