Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Sep;33(9):2405–2410. doi: 10.1128/jcm.33.9.2405-2410.1995

Use of a specific immunogenic region on the Cowdria ruminantium MAP1 protein in a serological assay.

A H van Vliet 1, B A van der Zeijst 1, E Camus 1, S M Mahan 1, D Martinez 1, F Jongejan 1
PMCID: PMC228424  PMID: 7494037

Abstract

Currently available serological tests for cowdriosis (Cowdria ruminantium infection) in domestic ruminants are hampered by their low specificities because of cross-reactivity with Ehrlichia spp. The use of recombinant major antigenic protein (MAP1) of C. ruminantium for serodiagnosis was investigated. Overlapping fragments of the MAP1 protein were expressed in Escherichia coli and were reacted with sera from sheep infected with either C. ruminantium or Ehrlichia ovina. Two immunogenic regions on the MAP1 protein, designated MAP1-A and MAP1-B, were identified. MAP1-A was reactive with C. ruminantium antisera, E. ovina antisera, and three MAP1-specific monoclonal antibodies, whereas MAP1-B reacted only with C. ruminantium antisera. An indirect enzyme-linked immunosorbent assay (ELISA) based on MAP1-B was further developed and validated with sera from animals experimentally infected with C. ruminantium or several Ehrlichia spp. Antibodies raised in sheep, cattle, and goats against nine isolates of C. ruminantium reacted with MAP1-B. Cross-reactivity with MAP1-B was limited to Ehrlichia canis and Ehrlichia chaffeensis, two rickettsias which do not infect ruminants. Antibodies to Ehrlichia spp. which do infect ruminants (E. bovis, E. ovina, and E. phagocytophila) did not react with MAP1-B. Antibody titers to C. ruminantium in sera from experimentally infected cattle, goats, and sheep were detectable for 50 to 200 days postinfection. Further validation of the recombinant MAP1-B-based ELISA was done with sera obtained from sheep raised in heartwater-free areas in Zimbabwe and from several Caribbean islands. A total of 159 of 169 samples which were considered to be false positive by immunoblotting or indirect ELISA did not react with MAP1-B.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (346.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbet A. F., Semu S. M., Chigagure N., Kelly P. J., Jongejan F., Mahan S. M. Size variation of the major immunodominant protein of Cowdria ruminantium. Clin Diagn Lab Immunol. 1994 Nov;1(6):744–746. doi: 10.1128/cdli.1.6.744-746.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barré N., Uilenberg G., Morel P. C., Camus E. Danger of introducing heartwater onto the American mainland: potential role of indigenous and exotic Amblyomma ticks. Onderstepoort J Vet Res. 1987 Sep;54(3):405–417. [PubMed] [Google Scholar]
  3. Birnie E. F., Burridge M. J., Camus E., Barré N. Heartwater in the Caribbean: isolation of Cowdria ruminantium from Antigua. Vet Rec. 1985 Feb 2;116(5):121–123. doi: 10.1136/vr.116.5.121. [DOI] [PubMed] [Google Scholar]
  4. Byrom B., Yunker C. E. Improved culture conditions for Cowdria ruminantium (Rickettsiales), the agent of heartwater disease of domestic ruminants. Cytotechnology. 1990 Nov;4(3):285–290. doi: 10.1007/BF00563789. [DOI] [PubMed] [Google Scholar]
  5. Camus E., Martinez D., Beauperthuy L., Benderdouche A., Coisne S., Corbette C., Denormandie N., Garris G., Harris E., King T. Heartwater in Guadeloupe and in the Caribbean. Rev Elev Med Vet Pays Trop. 1993;46(1-2):109–114. [PubMed] [Google Scholar]
  6. Du Plessis J. L. A method for determining the Cowdria ruminantium infection rate of Amblyomma hebraeum: effects in mice injected with tick homogenates. Onderstepoort J Vet Res. 1985 Jun;52(2):55–61. [PubMed] [Google Scholar]
  7. Du Plessis J. L., Bezuidenhout J. D., Brett M. S., Camus E., Jongejan F., Mahan S. M., Martinez D. The sero-diagnosis of heartwater: a comparison of five tests. Rev Elev Med Vet Pays Trop. 1993;46(1-2):123–129. [PubMed] [Google Scholar]
  8. Du Plessis J. L., Camus E., Oberem P. T., Malan L. Heartwater serology: some problems with the interpretation of results. Onderstepoort J Vet Res. 1987 Sep;54(3):327–329. [PubMed] [Google Scholar]
  9. Du Plessis J. L., Malan L. The application of the indirect fluorescent antibody test in research on heartwater. Onderstepoort J Vet Res. 1987 Sep;54(3):319–325. [PubMed] [Google Scholar]
  10. Fikrig E., Barthold S. W., Marcantonio N., Deponte K., Kantor F. S., Flavell R. A. Roles of OspA, OspB, and flagellin in protective immunity to Lyme borreliosis in laboratory mice. Infect Immun. 1992 Feb;60(2):657–661. doi: 10.1128/iai.60.2.657-661.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jongejan F., Morzaria S. P., Shariff O. A., Abdalla H. M. Isolation and transmission of Cowdria ruminantium (causal agent of heartwater disease) in Blue Nile Province, Sudan. Vet Res Commun. 1984 May;8(2):141–145. doi: 10.1007/BF02214705. [DOI] [PubMed] [Google Scholar]
  12. Jongejan F. Protective immunity to heartwater (Cowdria ruminantium infection) is acquired after vaccination with in vitro-attenuated rickettsiae. Infect Immun. 1991 Feb;59(2):729–731. doi: 10.1128/iai.59.2.729-731.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jongejan F., Thielemans M. J., Brière C., Uilenberg G. Antigenic diversity of Cowdria ruminantium isolates determined by cross-immunity. Res Vet Sci. 1991 Jul;51(1):24–28. doi: 10.1016/0034-5288(91)90025-j. [DOI] [PubMed] [Google Scholar]
  14. Jongejan F., Thielemans M. J., De Groot M., van Kooten P. J., van der Zeijst B. A. Competitive enzyme-linked immunosorbent assay for heartwater using monoclonal antibodies to a Cowdria ruminantium-specific 32-kilodalton protein. Vet Microbiol. 1991 Jul;28(2):199–211. doi: 10.1016/0378-1135(91)90093-u. [DOI] [PubMed] [Google Scholar]
  15. Jongejan F., Thielemans M. J. Identification of an immunodominant antigenically conserved 32-kilodalton protein from Cowdria ruminantium. Infect Immun. 1989 Oct;57(10):3243–3246. doi: 10.1128/iai.57.10.3243-3246.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jongejan F., Uilenberg G., Franssen F. F., Gueye A., Nieuwenhuijs J. Antigenic differences between stocks of Cowdria ruminantium. Res Vet Sci. 1988 Mar;44(2):186–189. [PubMed] [Google Scholar]
  17. Jongejan F., Wassink L. A., Thielemans M. J., Perie N. M., Uilenberg G. Serotypes in Cowdria ruminantium and their relationship with Ehrlichia phagocytophila determined by immunofluorescence. Vet Microbiol. 1989 Nov;21(1):31–40. doi: 10.1016/0378-1135(89)90016-3. [DOI] [PubMed] [Google Scholar]
  18. Jongejan F., de Vries N., Nieuwenhuijs J., Van Vliet A. H., Wassink L. A. The immunodominant 32-kilodalton protein of Cowdria ruminantium is conserved within the genus Ehrlichia. Rev Elev Med Vet Pays Trop. 1993;46(1-2):145–152. [PubMed] [Google Scholar]
  19. Mahan S. M., Tebele N., Mukwedeya D., Semu S., Nyathi C. B., Wassink L. A., Kelly P. J., Peter T., Barbet A. F. An immunoblotting diagnostic assay for heartwater based on the immunodominant 32-kilodalton protein of Cowdria ruminantium detects false positives in field sera. J Clin Microbiol. 1993 Oct;31(10):2729–2737. doi: 10.1128/jcm.31.10.2729-2737.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martinez D., Coisne S., Sheikboudou C., Jongejan F. Detection of antibodies to Cowdria ruminantium in the serum of domestic ruminants by indirect ELISA. Rev Elev Med Vet Pays Trop. 1993;46(1-2):115–120. [PubMed] [Google Scholar]
  21. Martinez D., Mari B., Aumont G., Vidalenc T. Development of a single dilution ELISA to detect antibody to Dermatophilus congolensis in goat and cattle sera. Vet Microbiol. 1993 Jan;34(1):47–62. doi: 10.1016/0378-1135(93)90006-s. [DOI] [PubMed] [Google Scholar]
  22. Muller Kubold A., Martinez D., Camus E., Jongejan F. Distribution of heartwater in the Caribbean determined on the basis of detection of antibodies to the conserved 32-kilodalton protein of Cowdria ruminantium. J Clin Microbiol. 1992 Jul;30(7):1870–1873. doi: 10.1128/jcm.30.7.1870-1873.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Perreau P., Morel P. C., Barre N., Durand P. Existence de la cowdriose (heartwater) à Cowdria ruminantium chez les ruminants des Antilles françaises (la Guadeloupe) et des Mascareignes (la Réunion et Ile Maurice). Rev Elev Med Vet Pays Trop. 1980;33(1):21–22. [PubMed] [Google Scholar]
  24. Semu S. M., Mahan S. M., Yunker C. E., Burridge M. J. Development and persistence of Cowdria ruminantium specific antibodies following experimental infection of cattle, as detected by the indirect fluorescent antibody test. Vet Immunol Immunopathol. 1992 Sep;33(4):339–352. doi: 10.1016/0165-2427(92)90005-b. [DOI] [PubMed] [Google Scholar]
  25. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  26. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Uilenberg G., Camus E., Barré N. Quelques observations sur une souche de Cowdria ruminantium isolée en Guadeloupe (Antilles françaises). Rev Elev Med Vet Pays Trop. 1985;38(1):34–42. [PubMed] [Google Scholar]
  28. Wright P. F., Nilsson E., Van Rooij E. M., Lelenta M., Jeggo M. H. Standardisation and validation of enzyme-linked immunosorbent assay techniques for the detection of antibody in infectious disease diagnosis. Rev Sci Tech. 1993 Jun;12(2):435–450. doi: 10.20506/rst.12.2.691. [DOI] [PubMed] [Google Scholar]
  29. de Vries N., Mahan S. M., Ushewokunze-Obatolu U., Norval R. A., Jongejan F. Correlation between antibodies to Cowdria ruminantium (rickettsiales) in cattle and the distribution of Amblyomma vector ticks in Zimbabwe. Exp Appl Acarol. 1993 Nov;17(11):799–810. doi: 10.1007/BF00225853. [DOI] [PubMed] [Google Scholar]
  30. du Plessis J. L., Kumm N. A. The passage of Cowdria ruminantium in mice. J S Afr Vet Med Assoc. 1971 Sep;42(3):217–221. [PubMed] [Google Scholar]
  31. van Vliet A. H., Jongejan F., van Kleef M., van der Zeijst B. A. Molecular cloning, sequence analysis, and expression of the gene encoding the immunodominant 32-kilodalton protein of Cowdria ruminantium. Infect Immun. 1994 Apr;62(4):1451–1456. doi: 10.1128/iai.62.4.1451-1456.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Vliet A. H., Jongejan F., van der Zeijst B. A. Phylogenetic position of Cowdria ruminantium (Rickettsiales) determined by analysis of amplified 16S ribosomal DNA sequences. Int J Syst Bacteriol. 1992 Jul;42(3):494–498. doi: 10.1099/00207713-42-3-494. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES