Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Oct;33(10):2567–2575. doi: 10.1128/jcm.33.10.2567-2575.1995

Phenotypic and genotypic analysis of variability in Aspergillus fumigatus.

E Rinyu 1, J Varga 1, L Ferenczy 1
PMCID: PMC228530  PMID: 8567884

Abstract

Sixty-one isolates and collection strains of Aspergillus fumigatus were compared for their phenotypic (morphological features and isoenzyme profiles) and genotypic (restriction enzyme-generated mitochondrial DNA and ribosomal DNA profiles and random amplified polymorphic DNA patterns) features. The examined strains exhibited highly variable colony morphologies and growth rates at different temperatures, but their micromorphologies and conidial diameters were characteristic of the species. Of the isoenzymes studied, the beta-arylesterase and phosphatase patterns were the most divergent, and the 61 strains could be classified into seven groups. The glucose 6-phosphate dehydrogenase and catalase isoenzyme patterns displayed only a limited variability, while the profiles of superoxide dismutase, lactate dehydrogenase, and glutamate dehydrogenase were highly conserved. The HaeIII-generated mitochondrial DNA patterns and SmaI-digested repetitive DNA and ribosomal DNA hybridization patterns of almost all strains were also invariable. The level of variation was much higher when random amplified polymorphic DNA analysis was applied. Although the patterns of the strains were very similar with most of the primers, the application of some primers made it possible to cluster the A. fumigatus isolates into several groups. The results indicate that the random amplified polymorphic DNA technique could be used more efficiently than isoenzyme analysis for typing A. fumigatus isolates. A good correlation was found between the dendrograms obtained from the isoenzyme and random amplified polymorphic DNA data, but the isoenzyme and amplified DNA patterns did not correlate with the pathogenicity, pigment production, or geographical origin of the strains.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (338.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aufauvre-Brown A., Cohen J., Holden D. W. Use of randomly amplified polymorphic DNA markers to distinguish isolates of Aspergillus fumigatus. J Clin Microbiol. 1992 Nov;30(11):2991–2993. doi: 10.1128/jcm.30.11.2991-2993.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  3. Borsuk P. A., Nagieć M. M., Stepień P. P., Bartnik E. Organization of the ribosomal RNA gene cluster in Aspergillus nidulans. Gene. 1982 Feb;17(2):147–152. doi: 10.1016/0378-1119(82)90067-1. [DOI] [PubMed] [Google Scholar]
  4. Burnie J. P., Coke A., Matthews R. C. Restriction endonuclease analysis of Aspergillus fumigatus DNA. J Clin Pathol. 1992 Apr;45(4):324–327. doi: 10.1136/jcp.45.4.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burnie J. P., Matthews R. C., Clark I., Milne L. J. Immunoblot fingerprinting Aspergillus fumigatus. J Immunol Methods. 1989 Mar 31;118(2):179–186. doi: 10.1016/0022-1759(89)90004-5. [DOI] [PubMed] [Google Scholar]
  6. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  7. Denning D. W., Clemons K. V., Hanson L. H., Stevens D. A. Restriction endonuclease analysis of total cellular DNA of Aspergillus fumigatus isolates of geographically and epidemiologically diverse origin. J Infect Dis. 1990 Nov;162(5):1151–1158. doi: 10.1093/infdis/162.5.1151. [DOI] [PubMed] [Google Scholar]
  8. Denning D. W., Shankland G. S., Stevens D. A. DNA fingerprinting of Aspergillus fumigatus isolates from patients with aspergilloma. J Med Vet Mycol. 1991;29(5):339–342. [PubMed] [Google Scholar]
  9. Duriez T., Walbaum S., Tailiez R., Biguet J. Etude enzymologique comparee de souches de Aspergillius fumigatus et de A. fischeri d'origine saprophytique ou isolees de lesions humaines ou animales. repercussions pratiques d'ordre diagnostique. Mycopathologia. 1976 Sep 24;59(2):81–90. doi: 10.1007/BF00493559. [DOI] [PubMed] [Google Scholar]
  10. Girardin H., Latgé J. P., Srikantha T., Morrow B., Soll D. R. Development of DNA probes for fingerprinting Aspergillus fumigatus. J Clin Microbiol. 1993 Jun;31(6):1547–1554. doi: 10.1128/jcm.31.6.1547-1554.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kelly J. M., Drysdale M. R., Sealy-Lewis H. M., Jones I. G., Lockington R. A. Alcohol dehydrogenase III in Aspergillus nidulans is anaerobically induced and post-transcriptionally regulated. Mol Gen Genet. 1990 Jul;222(2-3):323–328. doi: 10.1007/BF00633836. [DOI] [PubMed] [Google Scholar]
  12. Kim S. J., Chaparas S. D. Characterization of antigens from Aspergillus fumigatus. III. Comparison of antigenic relationships of clinically important aspergilli. Am Rev Respir Dis. 1979 Dec;120(6):1297–1303. doi: 10.1164/arrd.1979.120.6.1297. [DOI] [PubMed] [Google Scholar]
  13. Kurup V. P., Fink J. N., Scribner G. H., Falk M. J. Antigenic variability of Aspergillus fumigatus strains. Microbios. 1977;19(77-78):191–204. [PubMed] [Google Scholar]
  14. Kálmán E. T., Varga J., Kevei F. Characterization of interspecific hybrids within the Aspergillus nidulans group by isoenzyme analysis. Can J Microbiol. 1991 May;37(5):391–396. doi: 10.1139/m91-063. [DOI] [PubMed] [Google Scholar]
  15. Lehmann P. F., Kemker B. J., Hsiao C. B., Dev S. Isoenzyme biotypes of Candida species. J Clin Microbiol. 1989 Nov;27(11):2514–2521. doi: 10.1128/jcm.27.11.2514-2521.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leslie C. E., Flannigan B., Milne L. J. Morphological studies on clinical isolates of Aspergillus fumigatus. J Med Vet Mycol. 1988;26(6):335–341. [PubMed] [Google Scholar]
  17. Loudon K. W., Burnie J. P., Coke A. P., Matthews R. C. Application of polymerase chain reaction to fingerprinting Aspergillus fumigatus by random amplification of polymorphic DNA. J Clin Microbiol. 1993 May;31(5):1117–1121. doi: 10.1128/jcm.31.5.1117-1121.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Magee B. B., D'Souza T. M., Magee P. T. Strain and species identification by restriction fragment length polymorphisms in the ribosomal DNA repeat of Candida species. J Bacteriol. 1987 Apr;169(4):1639–1643. doi: 10.1128/jb.169.4.1639-1643.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Magee B. B., Magee P. T. Electrophoretic karyotypes and chromosome numbers in Candida species. J Gen Microbiol. 1987 Feb;133(2):425–430. doi: 10.1099/00221287-133-2-425. [DOI] [PubMed] [Google Scholar]
  20. Matsuda H., Kohno S., Maesaki S., Yamada H., Koga H., Tamura M., Kuraishi H., Sugiyama J. Application of ubiquinone systems and electrophoretic comparison of enzymes to identification of clinical isolates of Aspergillus fumigatus and several other species of Aspergillus. J Clin Microbiol. 1992 Aug;30(8):1999–2005. doi: 10.1128/jcm.30.8.1999-2005.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moody S. F., Tyler B. M. Restriction enzyme analysis of mitochondrial DNA of the Aspergillus flavus group: A. flavus, A. parasiticus, and A. nomius. Appl Environ Microbiol. 1990 Aug;56(8):2441–2452. doi: 10.1128/aem.56.8.2441-2452.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mulvey M., Vrijenhoek R. C. Genetic variation among laboratory strains of the planorbid snail Biomphalaria glabrata. Biochem Genet. 1981 Dec;19(11-12):1169–1182. doi: 10.1007/BF00484572. [DOI] [PubMed] [Google Scholar]
  23. PONTECORVO G., ROPER J. A., HEMMONS L. M., MACDONALD K. D., BUFTON A. W. J. The genetics of Aspergillus nidulans. Adv Genet. 1953;5:141–238. doi: 10.1016/s0065-2660(08)60408-3. [DOI] [PubMed] [Google Scholar]
  24. Spreadbury C. L., Bainbridge B. W., Cohen J. Restriction fragment length polymorphisms in isolates of Aspergillus fumigatus probed with part of the intergenic spacer region from the ribosomal RNA gene complex of Aspergillus nidulans. J Gen Microbiol. 1990 Oct;136(10):1991–1994. doi: 10.1099/00221287-136-10-1991. [DOI] [PubMed] [Google Scholar]
  25. Spreadbury C., Holden D., Aufauvre-Brown A., Bainbridge B., Cohen J. Detection of Aspergillus fumigatus by polymerase chain reaction. J Clin Microbiol. 1993 Mar;31(3):615–621. doi: 10.1128/jcm.31.3.615-621.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tang C. M., Holden D. W., Aufauvre-Brown A., Cohen J. The detection of Aspergillus spp. by the polymerase chain reaction and its evaluation in bronchoalveolar lavage fluid. Am Rev Respir Dis. 1993 Nov;148(5):1313–1317. doi: 10.1164/ajrccm/148.5.1313. [DOI] [PubMed] [Google Scholar]
  27. Varga J., Kevei F., Vriesema A., Debets F., Kozakiewicz Z., Croft J. H. Mitochondrial DNA restriction fragment length polymorphisms in field isolates of the Aspergillus niger aggregate. Can J Microbiol. 1994 Aug;40(8):612–621. doi: 10.1139/m94-098. [DOI] [PubMed] [Google Scholar]
  28. Varga J., Vágvölgyi C., Nagy A., Pfeiffer I., Ferenczy L. Isoenzyme, restriction fragment length polymorphism, and random amplified polymorphic DNA characterization of Phaffia rhodozyma Miller et al. Int J Syst Bacteriol. 1995 Jan;45(1):173–177. doi: 10.1099/00207713-45-1-173. [DOI] [PubMed] [Google Scholar]
  29. Varshney J. L., Sarbhoy A. K. A new species of Aspergillus fumigatus group and comments upon its synonymy. Mycopathologia. 1981 Feb 13;73(2):89–99. doi: 10.1007/BF00562596. [DOI] [PubMed] [Google Scholar]
  30. Wallenbeck I., Aukrust L., Einarsson R. Antigenic variability of different strains of Aspergillus fumigatus. Int Arch Allergy Appl Immunol. 1984;73(2):166–172. doi: 10.1159/000233459. [DOI] [PubMed] [Google Scholar]
  31. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Woodbury W., Spencer A. K., Stahman M. A. An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem. 1971 Nov;44(1):301–305. doi: 10.1016/0003-2697(71)90375-7. [DOI] [PubMed] [Google Scholar]
  33. van Belkum A., Quint W. G., de Pauw B. E., Melchers W. J., Meis J. F. Typing of Aspergillus species and Aspergillus fumigatus isolates by interrepeat polymerase chain reaction. J Clin Microbiol. 1993 Sep;31(9):2502–2505. doi: 10.1128/jcm.31.9.2502-2505.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES