Abstract
PCR-single-strand conformation polymorphism (PCR-SSCP) analysis is a rapid and convenient technique for the detection of mutations and allelic variants. We have adapted this technique for the identification of bacteria by PCR with fluorescein-labeled primers chosen from the conserved regions of the 16S rRNA gene flanking a variable region. The PCR product was denatured, separated on a nondenaturing gel, and detected by an automated DNA sequencer. The mobility of the single-stranded DNA is sequence dependent and allows the identification of a broad panel of bacteria. A single nucleotide difference in the amplified region was sufficient to obtain different PCR-SSCP patterns. The simultaneous amplification of multiple polymorphic regions by multiplex PCR with subsequent multiplex SSCP increased the discriminatory power of PCR-SSCP. A broad range of gram-negative and gram-positive bacteria were tested by PCR-SSCP, including, e.g., Escherichia coli, Enterobacter spp., Klebsiella spp., Haemophilus spp., Neisseria spp., Staphylococcus spp, Streptococcus spp., Enterococcus spp., and Bacillus spp. In total, a panel of 178 strains of bacteria representing 51 species in 21 genera was examined. Although a limited number of strains from each species were tested, the strains tested gave species-specific patterns, with only one exception: Shigella species were indistinguishable from E. coli. PCR is a sensitive technique; as few as 10 CFU of E. coli was sufficient to produce PCR-SSCP patterns suitable for identification. The whole fluorescence PCR-SSCP procedure takes approximately 8 h for the detection and identification of low numbers of bacteria.2+ fluorescence PCR-SSCP seems to be a promising method for the differentiation of a broad range of pathogens found in usually sterile clinical sites, such as blood and cerebrospinal fluid.
Full Text
The Full Text of this article is available as a PDF (221.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ainsworth P. J., Surh L. C., Coulter-Mackie M. B. Diagnostic single strand conformational polymorphism, (SSCP): a simplified non-radioisotopic method as applied to a Tay-Sachs B1 variant. Nucleic Acids Res. 1991 Jan 25;19(2):405–406. doi: 10.1093/nar/19.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barroso L. A., Wang S. Z., Phelps C. J., Johnson J. L., Wilkins T. D. Nucleotide sequence of Clostridium difficile toxin B gene. Nucleic Acids Res. 1990 Jul 11;18(13):4004–4004. doi: 10.1093/nar/18.13.4004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barry T., Powell R., Gannon F. A general method to generate DNA probes for microorganisms. Biotechnology (N Y) 1990 Mar;8(3):233–236. doi: 10.1038/nbt0390-233. [DOI] [PubMed] [Google Scholar]
- Bickler S. W., Heinrich M. C., Bagby G. C. Magnesium-dependent thermostability of DNase I. Biotechniques. 1992 Jul;13(1):64–66. [PubMed] [Google Scholar]
- Böttger E. C. Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiol Lett. 1989 Nov;53(1-2):171–176. doi: 10.1016/0378-1097(89)90386-8. [DOI] [PubMed] [Google Scholar]
- Chen K., Neimark H., Rumore P., Steinman C. R. Broad range DNA probes for detecting and amplifying eubacterial nucleic acids. FEMS Microbiol Lett. 1989 Jan 1;48(1):19–24. doi: 10.1016/0378-1097(89)90139-0. [DOI] [PubMed] [Google Scholar]
- Clark J. M. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res. 1988 Oct 25;16(20):9677–9686. doi: 10.1093/nar/16.20.9677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins M. D., Wallbanks S., Lane D. J., Shah J., Nietupski R., Smida J., Dorsch M., Stackebrandt E. Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol. 1991 Apr;41(2):240–246. doi: 10.1099/00207713-41-2-240. [DOI] [PubMed] [Google Scholar]
- Costa G. L., Weiner M. P. Polishing with T4 or Pfu polymerase increases the efficiency of cloning of PCR fragments. Nucleic Acids Res. 1994 Jun 25;22(12):2423–2423. doi: 10.1093/nar/22.12.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellison J., Dean M., Goldman D. Efficacy of fluorescence-based PCR-SSCP for detection of point mutations. Biotechniques. 1993 Oct;15(4):684–691. [PubMed] [Google Scholar]
- Greisen K., Loeffelholz M., Purohit A., Leong D. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol. 1994 Feb;32(2):335–351. doi: 10.1128/jcm.32.2.335-351.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi K. PCR-SSCP: a method for detection of mutations. Genet Anal Tech Appl. 1992 Jun;9(3):73–79. doi: 10.1016/1050-3862(92)90001-l. [DOI] [PubMed] [Google Scholar]
- Iwahana H., Yoshimoto K., Mizusawa N., Kudo E., Itakura M. Multiple fluorescence-based PCR-SSCP analysis. Biotechniques. 1994 Feb;16(2):296-7, 300-5. [PubMed] [Google Scholar]
- Jensen M. A., Webster J. A., Straus N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol. 1993 Apr;59(4):945–952. doi: 10.1128/aem.59.4.945-952.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makino R., Yazyu H., Kishimoto Y., Sekiya T., Hayashi K. F-SSCP: fluorescence-based polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) analysis. PCR Methods Appl. 1992 Aug;2(1):10–13. doi: 10.1101/gr.2.1.10. [DOI] [PubMed] [Google Scholar]
- Meier A., Persing D. H., Finken M., Böttger E. C. Elimination of contaminating DNA within polymerase chain reaction reagents: implications for a general approach to detection of uncultured pathogens. J Clin Microbiol. 1993 Mar;31(3):646–652. doi: 10.1128/jcm.31.3.646-652.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orita M., Suzuki Y., Sekiya T., Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989 Nov;5(4):874–879. doi: 10.1016/0888-7543(89)90129-8. [DOI] [PubMed] [Google Scholar]
- Rand K. H., Houck H. Taq polymerase contains bacterial DNA of unknown origin. Mol Cell Probes. 1990 Dec;4(6):445–450. doi: 10.1016/0890-8508(90)90003-i. [DOI] [PubMed] [Google Scholar]
- Widjojoatmodjo M. N., Fluit A. C., Verhoef J. Rapid identification of bacteria by PCR-single-strand conformation polymorphism. J Clin Microbiol. 1994 Dec;32(12):3002–3007. doi: 10.1128/jcm.32.12.3002-3007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson K. H., Blitchington R. B., Greene R. C. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol. 1990 Sep;28(9):1942–1946. doi: 10.1128/jcm.28.9.1942-1946.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]