Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Dec;33(12):3091–3095. doi: 10.1128/jcm.33.12.3091-3095.1995

Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes.

S G Rijpkema 1, M J Molkenboer 1, L M Schouls 1, F Jongejan 1, J F Schellekens 1
PMCID: PMC228650  PMID: 8586679

Abstract

We developed a rapid and reliable method for the identification Borrelia burgdorferi sensu lato species in ticks. We used the DNA sequence polymorphism of the spacer region between 5S and 23S rRNA genes, which has been shown to be able to discriminate between eight genomic groups of B. burgdorferi sensu lato (D. Postic, M. Assous, P. A. D. Grimont, and G. Baranton, Int. J. Syst. Bacteriol. 44:743-752, 1994). Spacer DNA was amplified by PCR and was then hybridized to five membrane-bound oligonucleotides. The oligonucleotides were specific for B. burgdorferi sensu stricto, Borrelia garinii, Borrelia afzelii, and group VS116. A probe which reacted with all genomic groups of B. burgdorferi sensu lato was also used. Ninety-six ticks collected in the field were destructed by bead beating, and the supernatant was used directly in a PCR. B. burgdorferi sensu lato DNA was detected in 6 of 57 adult ticks (11%) and 9 of 39 nymphs (23%). B. garinii was found in three nymphs and four adults, three nymphs carried B. afzelii, and one adult and one nymph carried group VS116. Double infections with B. afzelii and group VS116 were found in two nymphs and one adult. Thus, our method can simultaneously identify three genomic groups of B. burgdorferi sensu lato in ticks collected in the field. This technique provides new ways to study the association of genomic groups present in ticks and the risk of Lyme borreliosis.

Full Text

The Full Text of this article is available as a PDF (249.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthonissen F. M., De Kesel M., Hoet P. P., Bigaignon G. H. Evidence for the involvement of different genospecies of Borrelia in the clinical outcome of Lyme disease in Belgium. Res Microbiol. 1994 May;145(4):327–331. doi: 10.1016/0923-2508(94)90187-2. [DOI] [PubMed] [Google Scholar]
  2. Assous M. V., Postic D., Paul G., Névot P., Baranton G. Western blot analysis of sera from Lyme borreliosis patients according to the genomic species of the Borrelia strains used as antigens. Eur J Clin Microbiol Infect Dis. 1993 Apr;12(4):261–268. doi: 10.1007/BF01967256. [DOI] [PubMed] [Google Scholar]
  3. Baranton G., Postic D., Saint Girons I., Boerlin P., Piffaretti J. C., Assous M., Grimont P. A. Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol. 1992 Jul;42(3):378–383. doi: 10.1099/00207713-42-3-378. [DOI] [PubMed] [Google Scholar]
  4. Barbour A. G. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med. 1984 Jul-Aug;57(4):521–525. [PMC free article] [PubMed] [Google Scholar]
  5. Boerlin P., Peter O., Bretz A. G., Postic D., Baranton G., Piffaretti J. C. Population genetic analysis of Borrelia burgdorferi isolates by multilocus enzyme electrophoresis. Infect Immun. 1992 Apr;60(4):1677–1683. doi: 10.1128/iai.60.4.1677-1683.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P. Lyme disease-a tick-borne spirochetosis? Science. 1982 Jun 18;216(4552):1317–1319. doi: 10.1126/science.7043737. [DOI] [PubMed] [Google Scholar]
  7. Canica M. M., Nato F., du Merle L., Mazie J. C., Baranton G., Postic D. Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand J Infect Dis. 1993;25(4):441–448. doi: 10.3109/00365549309008525. [DOI] [PubMed] [Google Scholar]
  8. Demaerschalck I., Ben Messaoud A., De Kesel M., Hoyois B., Lobet Y., Hoet P., Bigaignon G., Bollen A., Godfroid E. Simultaneous presence of different Borrelia burgdorferi genospecies in biological fluids of Lyme disease patients. J Clin Microbiol. 1995 Mar;33(3):602–608. doi: 10.1128/jcm.33.3.602-608.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dressler F., Ackermann R., Steere A. C. Antibody responses to the three genomic groups of Borrelia burgdorferi in European Lyme borreliosis. J Infect Dis. 1994 Feb;169(2):313–318. doi: 10.1093/infdis/169.2.313. [DOI] [PubMed] [Google Scholar]
  10. Eiffert H., Ohlenbusch A., Christen H. J., Thomssen R., Spielman A., Matuschka F. R. Nondifferentiation between Lyme disease spirochetes from vector ticks and human cerebrospinal fluid. J Infect Dis. 1995 Feb;171(2):476–479. doi: 10.1093/infdis/171.2.476. [DOI] [PubMed] [Google Scholar]
  11. Ewing S. A., Dawson J. E., Kocan A. A., Barker R. W., Warner C. K., Panciera R. J., Fox J. C., Kocan K. M., Blouin E. F. Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum (Acari: Ixodidae). J Med Entomol. 1995 May;32(3):368–374. doi: 10.1093/jmedent/32.3.368. [DOI] [PubMed] [Google Scholar]
  12. Fukunaga M., Sohnaka M. Tandem repeat of the 23S and 5S ribosomal RNA genes in Borrelia burgdorferi, the etiological agent of Lyme disease. Biochem Biophys Res Commun. 1992 Mar 31;183(3):952–957. doi: 10.1016/s0006-291x(05)80282-7. [DOI] [PubMed] [Google Scholar]
  13. Karch H., Huppertz H. I., Böhme M., Schmidt H., Wiebecke D., Schwarzkopf A. Demonstration of Borrelia burgdorferi DNA in urine samples from healthy humans whose sera contain B. burgdorferi-specific antibodies. J Clin Microbiol. 1994 Sep;32(9):2312–2314. doi: 10.1128/jcm.32.9.2312-2314.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaufhold A., Podbielski A., Baumgarten G., Blokpoel M., Top J., Schouls L. Rapid typing of group A streptococci by the use of DNA amplification and non-radioactive allele-specific oligonucleotide probes. FEMS Microbiol Lett. 1994 Jun 1;119(1-2):19–25. doi: 10.1111/j.1574-6968.1994.tb06861.x. [DOI] [PubMed] [Google Scholar]
  15. Kuiper H., de Jongh B. M., Nauta A. P., Houweling H., Wiessing L. G., van Charante A. W., Spanjaard L. Lyme borreliosis in Dutch forestry workers. J Infect. 1991 Nov;23(3):279–286. doi: 10.1016/0163-4453(91)92936-y. [DOI] [PubMed] [Google Scholar]
  16. Leuba-Garcia S., Kramer M. D., Wallich R., Gern L. Characterization of Borrelia burgdorferi isolated from different organs of Ixodes ricinus ticks collected in nature. Zentralbl Bakteriol. 1994 Mar;280(4):468–475. doi: 10.1016/s0934-8840(11)80506-2. [DOI] [PubMed] [Google Scholar]
  17. Liveris D., Gazumyan A., Schwartz I. Molecular typing of Borrelia burgdorferi sensu lato by PCR-restriction fragment length polymorphism analysis. J Clin Microbiol. 1995 Mar;33(3):589–595. doi: 10.1128/jcm.33.3.589-595.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nohlmans L. M., de Boer R., van den Bogaard A. E., van Boven C. P. Genotypic and phenotypic analysis of Borrelia burgdorferi isolates from The Netherlands. J Clin Microbiol. 1995 Jan;33(1):119–125. doi: 10.1128/jcm.33.1.119-125.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Postic D., Assous M. V., Grimont P. A., Baranton G. Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl (23S) intergenic spacer amplicons. Int J Syst Bacteriol. 1994 Oct;44(4):743–752. doi: 10.1099/00207713-44-4-743. [DOI] [PubMed] [Google Scholar]
  20. Péter O., Bretz A. G. Polymorphism of outer surface proteins of Borrelia burgdorferi as a tool for classification. Zentralbl Bakteriol. 1992 Jun;277(1):28–33. doi: 10.1016/s0934-8840(11)80867-4. [DOI] [PubMed] [Google Scholar]
  21. Rijpkema S., Nieuwenhuijs J., Franssen F. F., Jongejan F. Infection rates of Borrelia burgdorferi in different instars of Ixodes ricinus ticks from the Dutch North Sea Island of Ameland. Exp Appl Acarol. 1994 Sep;18(9):531–542. doi: 10.1007/BF00058936. [DOI] [PubMed] [Google Scholar]
  22. Saiki R. K., Chang C. A., Levenson C. H., Warren T. C., Boehm C. D., Kazazian H. H., Jr, Erlich H. A. Diagnosis of sickle cell anemia and beta-thalassemia with enzymatically amplified DNA and nonradioactive allele-specific oligonucleotide probes. N Engl J Med. 1988 Sep 1;319(9):537–541. doi: 10.1056/NEJM198809013190903. [DOI] [PubMed] [Google Scholar]
  23. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  24. Schwartz I., Wormser G. P., Schwartz J. J., Cooper D., Weissensee P., Gazumyan A., Zimmermann E., Goldberg N. S., Bittker S., Campbell G. L. Diagnosis of early Lyme disease by polymerase chain reaction amplification and culture of skin biopsies from erythema migrans lesions. J Clin Microbiol. 1992 Dec;30(12):3082–3088. doi: 10.1128/jcm.30.12.3082-3088.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schwartz J. J., Gazumyan A., Schwartz I. rRNA gene organization in the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol. 1992 Jun;174(11):3757–3765. doi: 10.1128/jb.174.11.3757-3765.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Steere A. C. Lyme disease. N Engl J Med. 1989 Aug 31;321(9):586–596. doi: 10.1056/NEJM198908313210906. [DOI] [PubMed] [Google Scholar]
  27. Theisen M., Frederiksen B., Lebech A. M., Vuust J., Hansen K. Polymorphism in ospC gene of Borrelia burgdorferi and immunoreactivity of OspC protein: implications for taxonomy and for use of OspC protein as a diagnostic antigen. J Clin Microbiol. 1993 Oct;31(10):2570–2576. doi: 10.1128/jcm.31.10.2570-2576.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wienecke R., Neubert U., Volkenandt M. Cross immunity among types of Borrelia burgdorferi. Lancet. 1993 Aug 14;342(8868):435–435. doi: 10.1016/0140-6736(93)92848-n. [DOI] [PubMed] [Google Scholar]
  29. Wienecke R., Zöchling N., Neubert U., Schlüpen E. M., Meurer M., Volkenandt M. Molecular subtyping of Borrelia burgdorferi in erythema migrans and acrodermatitis chronica atrophicans. J Invest Dermatol. 1994 Jul;103(1):19–22. doi: 10.1111/1523-1747.ep12388947. [DOI] [PubMed] [Google Scholar]
  30. Wilske B., Preac-Mursic V., Göbel U. B., Graf B., Jauris S., Soutschek E., Schwab E., Zumstein G. An OspA serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J Clin Microbiol. 1993 Feb;31(2):340–350. doi: 10.1128/jcm.31.2.340-350.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. de Kok J. B., d'Oliveira C., Jongejan F. Detection of the protozoan parasite Theileria annulata in Hyalomma ticks by the polymerase chain reaction. Exp Appl Acarol. 1993 Nov;17(11):839–846. doi: 10.1007/BF00225857. [DOI] [PubMed] [Google Scholar]
  32. van Dam A. P., Kuiper H., Vos K., Widjojokusumo A., de Jongh B. M., Spanjaard L., Ramselaar A. C., Kramer M. D., Dankert J. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis. 1993 Oct;17(4):708–717. doi: 10.1093/clinids/17.4.708. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES