Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Dec;33(12):3169–3173. doi: 10.1128/jcm.33.12.3169-3173.1995

Comparison of arbitrarily primed PCR with restriction endonuclease and immunoblot analyses for typing Clostridium difficile isolates.

Y J Tang 1, S T Houston 1, P H Gumerlock 1, M E Mulligan 1, D N Gerding 1, S Johnson 1, F R Fekety 1, J Silva Jr 1
PMCID: PMC228666  PMID: 8586695

Abstract

Arbitrarily primed PCR (AP-PCR) was used to genotype 26 clinical isolates of Clostridium difficile previously analyzed by immunoblotting (IB) and 20 isolates typed by restriction endonuclease analysis (REA) with HindIII. Two levels of differentiation were achieved with the AP-PCR approach by use of two different arbitrary primers. With the 19-mer arbitrary primer T-7 (first level of differentiation), a good correlation was found between IB and AP-PCR typing. Twenty isolates grouped into six IB types were separated into seven major AP-PCR types. These seven AP-PCR groups were further discriminated into 12 subtypes after genotyping with the arbitrary primer PG-05 (second level of differentiation). The remaining six isolates, all of different IB types, showed a unique and distinct DNA banding pattern with both of the arbitrary primers, T-7 and PG-05. Twenty isolates representing 20 REA types from 15 REA groups were resolved into 13 AP-PCR DNA profiles with the arbitrary primer T-7. A good correlation was found at this level of differentiation between the major REA groups, Y and M, and AP-PCR typing. While AP-PCR with this primer failed to differentiate isolates in REA groups J, G, R, and B, AP-PCR with PG-05 resolved these four isolates into four distinct AP-PCR types. In addition, one of three M strains and one of four Y strains displayed a slightly different DNA banding pattern by AP-PCR (with PG-05) from that of the other strains in the group. We conclude that AP-PCR is a rapid and sensitive method which not only complements other typing schemes but also may be a substitute and prove to be especially suited for immediate epidemiological tracking of nosocomial infections due to C. difficile.

Full Text

The Full Text of this article is available as a PDF (367.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbut F., Mario N., Frottier J., Petit J. C. Use of the arbitrary primer polymerase chain reaction for investigating an outbreak of Clostridium difficile-associated diarrhea in AIDS patients. Eur J Clin Microbiol Infect Dis. 1993 Oct;12(10):794–795. doi: 10.1007/BF02098477. [DOI] [PubMed] [Google Scholar]
  2. Bingen E., Boissinot C., Desjardins P., Cave H., Brahimi N., Lambert-Zechovsky N., Denamur E., Blot P., Elion J. Arbitrarily primed polymerase chain reaction provides rapid differentiation of Proteus mirabilis isolates from a pediatric hospital. J Clin Microbiol. 1993 May;31(5):1055–1059. doi: 10.1128/jcm.31.5.1055-1059.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chachaty E., Saulnier P., Martin A., Mario N., Andremont A. Comparison of ribotyping, pulsed-field gel electrophoresis and random amplified polymorphic DNA for typing Clostridium difficile strains. FEMS Microbiol Lett. 1994 Sep 15;122(1-2):61–68. doi: 10.1111/j.1574-6968.1994.tb07144.x. [DOI] [PubMed] [Google Scholar]
  4. Clabots C. R., Johnson S., Bettin K. M., Mathie P. A., Mulligan M. E., Schaberg D. R., Peterson L. R., Gerding D. N. Development of a rapid and efficient restriction endonuclease analysis typing system for Clostridium difficile and correlation with other typing systems. J Clin Microbiol. 1993 Jul;31(7):1870–1875. doi: 10.1128/jcm.31.7.1870-1875.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clabots C. R., Johnson S., Olson M. M., Peterson L. R., Gerding D. N. Acquisition of Clostridium difficile by hospitalized patients: evidence for colonized new admissions as a source of infection. J Infect Dis. 1992 Sep;166(3):561–567. doi: 10.1093/infdis/166.3.561. [DOI] [PubMed] [Google Scholar]
  6. Cleary P. P., Kaplan E. L., Livdahl C., Skjold S. DNA fingerprints of Streptococcus pyogenes are M type specific. J Infect Dis. 1988 Dec;158(6):1317–1323. doi: 10.1093/infdis/158.6.1317. [DOI] [PubMed] [Google Scholar]
  7. Delmée M., Laroche Y., Avesani V., Cornelis G. Comparison of serogrouping and polyacrylamide gel electrophoresis for typing Clostridium difficile. J Clin Microbiol. 1986 Dec;24(6):991–994. doi: 10.1128/jcm.24.6.991-994.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehret W., Turba M., Pfaller P., Heizmann W., Ruckdeschel G. Computer-aided densitometric analysis of protein patterns of Clostridium difficile. Eur J Clin Microbiol Infect Dis. 1988 Apr;7(2):285–290. doi: 10.1007/BF01963103. [DOI] [PubMed] [Google Scholar]
  9. Ellsworth D. L., Rittenhouse K. D., Honeycutt R. L. Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques. 1993 Feb;14(2):214–217. [PubMed] [Google Scholar]
  10. Fang F. C., McClelland M., Guiney D. G., Jackson M. M., Hartstein A. I., Morthland V. H., Davis C. E., McPherson D. C., Welsh J. Value of molecular epidemiologic analysis in a nosocomial methicillin-resistant Staphylococcus aureus outbreak. JAMA. 1993 Sep 15;270(11):1323–1328. [PubMed] [Google Scholar]
  11. Fekete A., Bantle J. A., Halling S. M., Stich R. W. Amplification fragment length polymorphism in Brucella strains by use of polymerase chain reaction with arbitrary primers. J Bacteriol. 1992 Dec;174(23):7778–7783. doi: 10.1128/jb.174.23.7778-7783.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gomez-Lus P., Fields B. S., Benson R. F., Martin W. T., O'Connor S. P., Black C. M. Comparison of arbitrarily primed polymerase chain reaction, ribotyping, and monoclonal antibody analysis for subtyping Legionella pneumophila serogroup 1. J Clin Microbiol. 1993 Jul;31(7):1940–1942. doi: 10.1128/jcm.31.7.1940-1942.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gumerlock P. H., Tang Y. J., Weiss J. B., Silva J., Jr Specific detection of toxigenic strains of Clostridium difficile in stool specimens. J Clin Microbiol. 1993 Mar;31(3):507–511. doi: 10.1128/jcm.31.3.507-511.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kato H., Kato N., Watanabe K., Ueno K., Ushijima H., Hashira S., Abe T. Application of typing by pulsed-field gel electrophoresis to the study of Clostridium difficile in a neonatal intensive care unit. J Clin Microbiol. 1994 Sep;32(9):2067–2070. doi: 10.1128/jcm.32.9.2067-2070.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Killgore G. E., Kato H. Use of arbitrary primer PCR to type Clostridium difficile and comparison of results with those by immunoblot typing. J Clin Microbiol. 1994 Jun;32(6):1591–1593. doi: 10.1128/jcm.32.6.1591-1593.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kristjánsson M., Samore M. H., Gerding D. N., DeGirolami P. C., Bettin K. M., Karchmer A. W., Arbeit R. D. Comparison of restriction endonuclease analysis, ribotyping, and pulsed-field gel electrophoresis for molecular differentiation of Clostridium difficile strains. J Clin Microbiol. 1994 Aug;32(8):1963–1969. doi: 10.1128/jcm.32.8.1963-1969.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McFarland L. V., Elmer G. W., Stamm W. E., Mulligan M. E. Correlation of immunoblot type, enterotoxin production, and cytotoxin production with clinical manifestations of Clostridium difficile infection in a cohort of hospitalized patients. Infect Immun. 1991 Jul;59(7):2456–2462. doi: 10.1128/iai.59.7.2456-2462.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McMillin D. E., Muldrow L. L. Typing of toxic strains of Clostridium difficile using DNA fingerprints generated with arbitrary polymerase chain reaction primers. FEMS Microbiol Lett. 1992 Apr 1;71(1):5–9. doi: 10.1016/0378-1097(92)90532-s. [DOI] [PubMed] [Google Scholar]
  19. Mulligan M. E., Peterson L. R., Kwok R. Y., Clabots C. R., Gerding D. N. Immunoblots and plasmid fingerprints compared with serotyping and polyacrylamide gel electrophoresis for typing Clostridium difficile. J Clin Microbiol. 1988 Jan;26(1):41–46. doi: 10.1128/jcm.26.1.41-46.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Samore M. H., Bettin K. M., DeGirolami P. C., Clabots C. R., Gerding D. N., Karchmer A. W. Wide diversity of Clostridium difficile types at a tertiary referral hospital. J Infect Dis. 1994 Sep;170(3):615–621. doi: 10.1093/infdis/170.3.615. [DOI] [PubMed] [Google Scholar]
  21. Saulnier P., Bourneix C., Prévost G., Andremont A. Random amplified polymorphic DNA assay is less discriminant than pulsed-field gel electrophoresis for typing strains of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 1993 Apr;31(4):982–985. doi: 10.1128/jcm.31.4.982-985.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Silva J., Jr, Iezzi C. Clostridium difficile as a nosocomial pathogen. J Hosp Infect. 1988 Feb;11 (Suppl A):378–385. doi: 10.1016/0195-6701(88)90214-9. [DOI] [PubMed] [Google Scholar]
  23. Silva J., Jr, Tang Y. J., Gumerlock P. H. Genotyping of Clostridium difficile isolates. J Infect Dis. 1994 Mar;169(3):661–664. doi: 10.1093/infdis/169.3.661. [DOI] [PubMed] [Google Scholar]
  24. Tabaqchali S. Epidemiologic markers of Clostridium difficile. Rev Infect Dis. 1990 Jan-Feb;12 (Suppl 2):S192–S199. doi: 10.1093/clinids/12.supplement_2.s192. [DOI] [PubMed] [Google Scholar]
  25. Tabaqchali S. Epidemiologic markers of Clostridium difficile. Rev Infect Dis. 1990 Jan-Feb;12 (Suppl 2):S192–S199. doi: 10.1093/clinids/12.supplement_2.s192. [DOI] [PubMed] [Google Scholar]
  26. Tang Y. J., Gumerlock P. H., Weiss J. B., Silva J., Jr Specific detection of Clostridium difficile toxin A gene sequences in clinical isolates. Mol Cell Probes. 1994 Dec;8(6):463–467. doi: 10.1006/mcpr.1994.1066. [DOI] [PubMed] [Google Scholar]
  27. Tsang V. C., Peralta J. M., Simons A. R. Enzyme-linked immunoelectrotransfer blot techniques (EITB) for studying the specificities of antigens and antibodies separated by gel electrophoresis. Methods Enzymol. 1983;92:377–391. doi: 10.1016/0076-6879(83)92032-3. [DOI] [PubMed] [Google Scholar]
  28. VanCouwenberghe C. J., Cohen S. H., Tang Y. J., Gumerlock P. H., Silva J., Jr Genomic fingerprinting of epidemic and endemic strains of Stenotrophomonas maltophilia (formerly Xanthomonas maltophilia) by arbitrarily primed PCR. J Clin Microbiol. 1995 May;33(5):1289–1291. doi: 10.1128/jcm.33.5.1289-1291.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. van Belkum A., Struelens M., Quint W. Typing of Legionella pneumophila strains by polymerase chain reaction-mediated DNA fingerprinting. J Clin Microbiol. 1993 Aug;31(8):2198–2200. doi: 10.1128/jcm.31.8.2198-2200.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES