Abstract
Immunoassays based on the highly immunogenic transmembrane protein of human T-cell lymphotropic virus type 1 (HTLV-1) (protein 21c) are capable of detecting antibodies in all individuals infected with HTLV-1 and HTLV-2. However, because of antigenic mimicry with other cellular and viral proteins, such assays also have a large proportion of false-positive reactions. We have recently identified an immunodominant epitope, designated GD21-I located within amino acids 361 to 404 of the transmembrane protein, that appears to eliminate such false positivity. This recombinant GD21-I protein was used in conjunction with additional recombinant HTLV type-specific proteins and a whole virus lysate to develop a modified Western blot (immunoblot) assay (HTLV WB 2.4). The sensitivity and specificity of this assay were evaluated with 352 specimens whose infection status was determined by PCR assay for the presence or absence of HTLV-1/2 proviral sequences. All HTLV-1-positive (n = 102) and HTLV-2-positive (n = 107) specimens reacted with GD21-1 in the HTLV WB 2.4 assay, yielding a test sensitivity of 100%. Furthermore, all specimens derived from individuals infected with different viral subtypes of HTLV-1 (Cosmopolitan, Japanese, and Melanesian) and HTLV-2 (IIa0, a3, a4, IIb1, b4, and b5) reacted with GD21-I in the HTLV WB 2.4 assay. More importantly, HTLV WB 2.4 analysis of 81 PCR-negative specimens, all of which reacted to recombinant protein 21e in the presence or absence of p24 and p19 reactivity in the standard WB assay, showed that only two specimens retained reactivity to GD21-I, yielding an improved test specificity for the transmembrane protein of 97.5%. None of 41 specimens with gag reactivity only or 21 HTLV-negative specimens demonstrated reactivity to GD21-I. In an analysis of additional specimens (n = 169) from different geographic areas for which PCR results were not available, a substantial increase in the specificity of GD21-I detection was demonstrated, with no effect on the sensitivity of GD21-I detection among specimens from seropositive donors. Thus, the highly sensitive, GD21-I-based HTLV WB 2.4 assay eliminates the majority of false-positive transmembrane results, thereby increasing the specificity for serologic confirmation of HTLV-1 and HTLV-2 infections.
Full Text
The Full Text of this article is available as a PDF (300.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brodine S. K., Kaime E. M., Roberts C., Turnicky R. P., Lal R. B. Simultaneous confirmation and differentiation of human T-lymphotropic virus types I and II infection by modified western blot containing recombinant envelope glycoproteins. Transfusion. 1993 Nov-Dec;33(11):925–929. doi: 10.1046/j.1537-2995.1993.331194082384.x. [DOI] [PubMed] [Google Scholar]
- Buckner C., Roberts C. R., Foung S. K., Lipka J., Reyes G. R., Hadlock K., Chan L., Gongora-Biachi R. A., Hjelle B., Lal R. B. Immune responsiveness to the immunodominant recombinant envelope epitopes of human T lymphotropic virus types I and II in diverse geographic populations. J Infect Dis. 1992 Nov;166(5):1160–1163. doi: 10.1093/infdis/166.5.1160. [DOI] [PubMed] [Google Scholar]
- Busch M. P., Laycock M., Kleinman S. H., Wages J. W., Jr, Calabro M., Kaplan J. E., Khabbaz R. F., Hollingsworth C. G. Accuracy of supplementary serologic testing for human T-lymphotropic virus types I and II in US blood donors. Retrovirus Epidemiology Donor Study. Blood. 1994 Feb 15;83(4):1143–1148. [PubMed] [Google Scholar]
- Gallo D., Diggs J. L., Hanson C. V. Evaluation of two commercial human T-cell lymphotropic virus western blot (immunoblot) kits with problem specimens. J Clin Microbiol. 1994 Sep;32(9):2046–2049. doi: 10.1128/jcm.32.9.2046-2049.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garin B., Gosselin S., de Thé G., Gessain A. HTLV-I/II infection in a high viral endemic area of Zaire, Central Africa: comparative evaluation of serology, PCR, and significance of indeterminate western blot pattern. J Med Virol. 1994 Sep;44(1):104–109. doi: 10.1002/jmv.1890440119. [DOI] [PubMed] [Google Scholar]
- Giri A., Markham P., Digilio L., Hurteau G., Gallo R. C., Franchini G. Isolation of a novel simian T-cell lymphotropic virus from Pan paniscus that is distantly related to the human T-cell leukemia/lymphotropic virus types I and II. J Virol. 1994 Dec;68(12):8392–8395. doi: 10.1128/jvi.68.12.8392-8395.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goubau P., Van Brussel M., Vandamme A. M., Liu H. F., Desmyter J. A primate T-lymphotropic virus, PTLV-L, different from human T-lymphotropic viruses types I and II, in a wild-caught baboon (Papio hamadryas). Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2848–2852. doi: 10.1073/pnas.91.7.2848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hadlock K. G., Goh C. J., Bradshaw P. A., Perkins S., Lo J., Kaplan J. E., Khabbaz R., Foung S. K. Delineation of an immunodominant and human T-cell lymphotropic virus (HTLV)-specific epitope within the HTLV-I transmembrane glycoprotein. Blood. 1995 Aug 15;86(4):1392–1399. [PubMed] [Google Scholar]
- Höllsberg P., Hafler D. A. Seminars in medicine of the Beth Israel Hospital, Boston. Pathogenesis of diseases induced by human lymphotropic virus type I infection. N Engl J Med. 1993 Apr 22;328(16):1173–1182. doi: 10.1056/NEJM199304223281608. [DOI] [PubMed] [Google Scholar]
- Kleinman S. H., Kaplan J. E., Khabbaz R. F., Calabro M. A., Thomson R., Busch M. Evaluation of a p21e-spiked western blot (immunoblot) in confirming human T-cell lymphotropic virus type I or II infection in volunteer blood donors. The Retrovirus Epidemiology Donor Study Group. J Clin Microbiol. 1994 Mar;32(3):603–607. doi: 10.1128/jcm.32.3.603-607.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lal R. B., Brodine S., Kazura J., Mbidde-Katonga E., Yanagihara R., Roberts C. Sensitivity and specificity of a recombinant transmembrane glycoprotein (rgp21)-spiked western immunoblot for serological confirmation of human T-cell lymphotropic virus type I and type II infections. J Clin Microbiol. 1992 Feb;30(2):296–299. doi: 10.1128/jcm.30.2.296-299.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lal R. B., Owen S. M., Rudoph D., Levine P. H. Sequence variation within the immunodominant epitope-coding region from the external glycoprotein of human T lymphotropic virus type II in isolates from Seminole Indians. J Infect Dis. 1994 Feb;169(2):407–411. doi: 10.1093/infdis/169.2.407. [DOI] [PubMed] [Google Scholar]
- Lal R. B., Rudolph D. L., Coligan J. E., Brodine S. K., Roberts C. R. Failure to detect evidence of human T-lymphotropic virus (HTLV) type I and type II in blood donors with isolated gag antibodies to HTLV-I/II. Blood. 1992 Jul 15;80(2):544–550. [PubMed] [Google Scholar]
- Lillehoj E. P., Alexander S. S., Dubrule C. J., Wiktor S., Adams R., Tai C. C., Manns A., Blattner W. A. Development and evaluation of a human T-cell leukemia virus type I serologic confirmatory assay incorporating a recombinant envelope polypeptide. J Clin Microbiol. 1990 Dec;28(12):2653–2658. doi: 10.1128/jcm.28.12.2653-2658.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson K. E., Donahue J. G., Muñoz A., Cohen N. D., Ness P. M., Teague A., Stambolis V. A., Yawn D. H., Callicott B., McAllister H. Transmission of retroviruses from seronegative donors by transfusion during cardiac surgery. A multicenter study of HIV-1 and HTLV-I/II infections. Ann Intern Med. 1992 Oct 1;117(7):554–559. doi: 10.7326/0003-4819-117-7-554. [DOI] [PubMed] [Google Scholar]
- Pardi D., Hjelle B., Folks T. M., Lal R. B. Genotypic characteristics of HTLV-II isolates from Amerindian and non-Indian populations. Virus Genes. 1995;10(1):27–35. doi: 10.1007/BF01724294. [DOI] [PubMed] [Google Scholar]
- Roberts B. D., Foung S. K., Lipka J. J., Kaplan J. E., Hadlock K. G., Reyes G. R., Chan L., Heneine W., Khabbaz R. F. Evaluation of an immunoblot assay for serological confirmation and differentiation of human T-cell lymphotropic virus types I and II. J Clin Microbiol. 1993 Feb;31(2):260–264. doi: 10.1128/jcm.31.2.260-264.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulz T. F., Calabrò M. L., Hoad J. G., Carrington C. V., Matutes E., Catovsky D., Weiss R. A. HTLV-1 envelope sequences from Brazil, the Caribbean, and Romania: clustering of sequences according to geographic origin and variability in an antibody epitope. Virology. 1991 Oct;184(2):483–491. doi: 10.1016/0042-6822(91)90418-b. [DOI] [PubMed] [Google Scholar]
- Schulz T. F., Jameson B. A., Lopalco L., Siccardi A. G., Weiss R. A., Moore J. P. Conserved structural features in the interaction between retroviral surface and transmembrane glycoproteins? AIDS Res Hum Retroviruses. 1992 Sep;8(9):1571–1580. doi: 10.1089/aid.1992.8.1571. [DOI] [PubMed] [Google Scholar]
- Switzer W. M., Owen S. M., Pieniazek D. A., Nerurkar V. R., Duenas-Barajas E., Heneine W., Lal R. B. Molecular analysis of human T-cell lymphotropic virus type II from Wayuu Indians of Colombia demonstrates two subtypes of HTLV-IIb. Virus Genes. 1995;10(2):153–162. doi: 10.1007/BF01702596. [DOI] [PubMed] [Google Scholar]
- Switzer W. M., Pieniazek D., Swanson P., Samdal H. H., Soriano V., Khabbaz R. F., Kaplan J. E., Lal R. B., Heneine W. Phylogenetic relationship and geographic distribution of multiple human T-cell lymphotropic virus type II subtypes. J Virol. 1995 Feb;69(2):621–632. doi: 10.1128/jvi.69.2.621-632.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vidal A. U., Gessain A., Yoshida M., Tekaia F., Garin B., Guillemain B., Schulz T., Farid R., De Thé G. Phylogenetic classification of human T cell leukaemia/lymphoma virus type I genotypes in five major molecular and geographical subtypes. J Gen Virol. 1994 Dec;75(Pt 12):3655–3666. doi: 10.1099/0022-1317-75-12-3655. [DOI] [PubMed] [Google Scholar]
- Zaaijer H. L., Cuypers H. T., Dudok de Wit C., Lelie P. N. Results of 1-year screening of donors in The Netherlands for human T-lymphotropic virus (HTLV) type I: significance of Western blot patterns for confirmation of HTLV infection. Transfusion. 1994 Oct;34(10):877–880. doi: 10.1046/j.1537-2995.1994.341095026973.x. [DOI] [PubMed] [Google Scholar]