Abstract
Diarrheal feces from three sambar deer and one waterbuck in a wild animal habitat and one white-tailed deer on a wildlife farm in Ohio contained coronavirus particles which were agglutinated by antiserum to bovine coronavirus (BCV) in immune electron microscopy. Three coronavirus strains were isolated in human rectal tumor cells from the feces of the sambar and white-tailed deer and the waterbuck, respectively. Hemagglutination, receptor-destroying enzyme activity, indirect immunofluorescence, hemagglutination inhibition, virus neutralization, and Western blot (immunoblot) tests showed close biological and antigenic relationships among the isolates and with selected BCV strains. Gnotobiotic and colostrum-deprived calves inoculated with each of these isolates developed diarrhea and shed coronavirus in their feces and from their nasal passages. In a serological survey of coronavirus infections among wild deer, 8.7 and 6.6% of sera from mule deer in Wyoming and from white-tailed deer in Ohio, respectively, were seropositive against both of the isolates and selected BCV isolates by indirect immunofluorescence tests. These results confirm the existence of coronaviruses in wild ruminants and suggest that these species may harbor coronavirus strains transmissible to cattle.
Full Text
The Full Text of this article is available as a PDF (379.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benfield D. A., Saif L. J. Cell culture propagation of a coronavirus isolated from cows with winter dysentery. J Clin Microbiol. 1990 Jun;28(6):1454–1457. doi: 10.1128/jcm.28.6.1454-1457.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell S. G., Cookingham C. A. The enigma of winter dysentery. Cornell Vet. 1978 Oct;68(4):423–441. [PubMed] [Google Scholar]
- Chasey D., Reynolds D. J., Bridger J. C., Debney T. G., Scott A. C. Identification of coronaviruses in exotic species of Bovidae. Vet Rec. 1984 Dec 8;115(23):602–603. doi: 10.1136/vr.115.23.602. [DOI] [PubMed] [Google Scholar]
- Clark M. A. Bovine coronavirus. Br Vet J. 1993 Jan-Feb;149(1):51–70. doi: 10.1016/S0007-1935(05)80210-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dea S., Roy R. S., Elazhary M. A. Antigenic variations among calf diarrhea coronaviruses by immunodiffusion and counterimmunoelectrophoresis. Ann Rech Vet. 1982;13(4):351–356. [PubMed] [Google Scholar]
- Dea S., Verbeek A. J., Tijssen P. Antigenic and genomic relationships among turkey and bovine enteric coronaviruses. J Virol. 1990 Jun;64(6):3112–3118. doi: 10.1128/jvi.64.6.3112-3118.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deregt D., Babiuk L. A. Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology. 1987 Dec;161(2):410–420. doi: 10.1016/0042-6822(87)90134-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerna G., Passarani N., Battaglia M., Rondanelli E. G. Human enteric coronaviruses: antigenic relatedness to human coronavirus OC43 and possible etiologic role in viral gastroenteritis. J Infect Dis. 1985 May;151(5):796–803. doi: 10.1093/infdis/151.5.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heckert R. A., Saif L. J., Mengel J. P., Myers G. W. Isotype-specific antibody responses to bovine coronavirus structural proteins in serum, feces, and mucosal secretions from experimentally challenge-exposed colostrum-deprived calves. Am J Vet Res. 1991 May;52(5):692–699. [PubMed] [Google Scholar]
- Hussain K. A., Storz J., Kousoulas K. G. Comparison of bovine coronavirus (BCV) antigens: monoclonal antibodies to the spike glycoprotein distinguish between vaccine and wild-type strains. Virology. 1991 Jul;183(1):442–445. doi: 10.1016/0042-6822(91)90163-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNulty M. S., Bryson D. G., Allan G. M., Logan E. F. Coronavirus infection of the bovine respiratory tract. Vet Microbiol. 1984 Sep;9(5):425–434. doi: 10.1016/0378-1135(84)90063-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds D. J., Debney T. G., Hall G. A., Thomas L. H., Parsons K. R. Studies on the relationship between coronaviruses from the intestinal and respiratory tracts of calves. Arch Virol. 1985;85(1-2):71–83. doi: 10.1007/BF01317007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ritchie A. E., Deshmukh D. R., Larsen C. T., Pomeroy B. S. Electron microscopy of coronavirus-like particles characteristic of turkey bluecomb disease. Avian Dis. 1973 Jul-Sep;17(3):546–558. [PubMed] [Google Scholar]
- Saif L. J. A review of evidence implicating bovine coronavirus in the etiology of winter dysentery in cows: an enigma resolved? Cornell Vet. 1990 Oct;80(4):303–311. [PubMed] [Google Scholar]
- Saif L. J., Bohl E. H., Kohler E. M., Hughes J. H. Immune electron microscopy of transmissible gastroenteritis virus and rotavirus (reovirus-like agent) of swine. Am J Vet Res. 1977 Jan;38(1):13–20. [PubMed] [Google Scholar]
- Saif L. J., Redman D. R., Moorhead P. D., Theil K. W. Experimentally induced coronavirus infections in calves: viral replication in the respiratory and intestinal tracts. Am J Vet Res. 1986 Jul;47(7):1426–1432. [PubMed] [Google Scholar]
- Sato K., Inaba Y., Matumoto M. Serological relation between calf diarrhea coronavirus and hemagglutinating encephalomyelitis virus. Arch Virol. 1980;66(2):157–159. doi: 10.1007/BF01314983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultze B., Gross H. J., Brossmer R., Herrler G. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J Virol. 1991 Nov;65(11):6232–6237. doi: 10.1128/jvi.65.11.6232-6237.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spaan W., Cavanagh D., Horzinek M. C. Coronaviruses: structure and genome expression. J Gen Virol. 1988 Dec;69(Pt 12):2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
- Storz J., Herrler G., Snodgrass D. R., Hussain K. A., Zhang X. M., Clark M. A., Rott R. Monoclonal antibodies differentiate between the haemagglutinating and the receptor-destroying activities of bovine coronavirus. J Gen Virol. 1991 Nov;72(Pt 11):2817–2820. doi: 10.1099/0022-1317-72-11-2817. [DOI] [PubMed] [Google Scholar]
- Storz J., Zhang X. M., Rott R. Comparison of hemagglutinating, receptor-destroying, and acetylesterase activities of avirulent and virulent bovine coronavirus strains. Arch Virol. 1992;125(1-4):193–204. doi: 10.1007/BF01309637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsunemitsu H., Saif L. J. Antigenic and biological comparisons of bovine coronaviruses derived from neonatal calf diarrhea and winter dysentery of adult cattle. Arch Virol. 1995;140(7):1303–1311. doi: 10.1007/BF01322757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsunemitsu H., Yonemichi H., Hirai T., Kudo T., Onoe S., Mori K., Shimizu M. Isolation of bovine coronavirus from feces and nasal swabs of calves with diarrhea. J Vet Med Sci. 1991 Jun;53(3):433–437. doi: 10.1292/jvms.53.433. [DOI] [PubMed] [Google Scholar]
- Tzipori S., Smith M., Makin T., McCaughan C. Enteric coronavirus-like particles in sheep. Aust Vet J. 1978 Jun;54(6):320–321. doi: 10.1111/j.1751-0813.1978.tb02478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vautherot J. F. Plaque assay for titration of bovine enteric coronavirus. J Gen Virol. 1981 Oct;56(Pt 2):451–455. doi: 10.1099/0022-1317-56-2-451. [DOI] [PubMed] [Google Scholar]
- Wege H., Siddell S., ter Meulen V. The biology and pathogenesis of coronaviruses. Curr Top Microbiol Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
- el-Ghorr A. A., Snodgrass D. R., Scott F. M., Campbell I. A serological comparison of bovine coronavirus strains. Arch Virol. 1989;104(3-4):241–248. doi: 10.1007/BF01315546. [DOI] [PMC free article] [PubMed] [Google Scholar]