Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Dec;33(12):3270–3274. doi: 10.1128/jcm.33.12.3270-3274.1995

Transhemispheric exchange of Lyme disease spirochetes by seabirds.

B Olsen 1, D C Duffy 1, T G Jaenson 1, A Gylfe 1, J Bonnedahl 1, S Bergström 1
PMCID: PMC228686  PMID: 8586715

Abstract

Lyme disease is a zoonosis transmitted by ticks and caused by the spirochete Borrelia burgdorferi sensu lato. Epidemiological and ecological investigations to date have focused on the terrestrial forms of Lyme disease. Here we show a significant role for seabirds in a global transmission cycle by demonstrating the presence of Lyme disease Borrelia spirochetes in Ixodes uriae ticks from several seabird colonies in both the Southern and Northern Hemispheres. Borrelia DNA was isolated from I. uriae ticks and from cultured spirochetes. Sequence analysis of a conserved region of the flagellin (fla) gene revealed that the DNA obtained was from B. garinii regardless of the geographical origin of the sample. Identical fla gene fragments in ticks obtained from different hemispheres indicate a transhemispheric exchange of Lyme disease spirochetes. A marine ecological niche and a marine epidemiological route for Lyme disease borreliae are proposed.

Full Text

The Full Text of this article is available as a PDF (195.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. F., Johnson R. C., Magnarelli L. A., Hyde F. W. Involvement of birds in the epidemiology of the Lyme disease agent Borrelia burgdorferi. Infect Immun. 1986 Feb;51(2):394–396. doi: 10.1128/iai.51.2.394-396.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baranton G., Postic D., Saint Girons I., Boerlin P., Piffaretti J. C., Assous M., Grimont P. A. Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol. 1992 Jul;42(3):378–383. doi: 10.1099/00207713-42-3-378. [DOI] [PubMed] [Google Scholar]
  3. Barbour A. G., Hayes S. F., Heiland R. A., Schrumpf M. E., Tessier S. L. A Borrelia-specific monoclonal antibody binds to a flagellar epitope. Infect Immun. 1986 May;52(2):549–554. doi: 10.1128/iai.52.2.549-554.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbour A. G. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med. 1984 Jul-Aug;57(4):521–525. [PMC free article] [PubMed] [Google Scholar]
  5. Bergström S., Olsén B., Burman N., Gothefors L., Jaenson T. G., Jonsson M., Mejlon H. A. Molecular characterization of Borrelia burgdorferi isolated from Ixodes ricinus in northern Sweden. Scand J Infect Dis. 1992;24(2):181–188. doi: 10.3109/00365549209052610. [DOI] [PubMed] [Google Scholar]
  6. Canica M. M., Nato F., du Merle L., Mazie J. C., Baranton G., Postic D. Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand J Infect Dis. 1993;25(4):441–448. doi: 10.3109/00365549309008525. [DOI] [PubMed] [Google Scholar]
  7. Ishizawa M., Kobayashi Y., Miyamura T., Matsuura S. Simple procedure of DNA isolation from human serum. Nucleic Acids Res. 1991 Oct 25;19(20):5792–5792. doi: 10.1093/nar/19.20.5792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jonsson M., Noppa L., Barbour A. G., Bergström S. Heterogeneity of outer membrane proteins in Borrelia burgdorferi: comparison of osp operons of three isolates of different geographic origins. Infect Immun. 1992 May;60(5):1845–1853. doi: 10.1128/iai.60.5.1845-1853.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kawabata H., Tashibu H., Yamada K., Masuzawa T., Yanagihara Y. Polymerase chain reaction analysis of Borrelia species isolated in Japan. Microbiol Immunol. 1994;38(8):591–598. doi: 10.1111/j.1348-0421.1994.tb01828.x. [DOI] [PubMed] [Google Scholar]
  10. Lane R. S., Piesman J., Burgdorfer W. Lyme borreliosis: relation of its causative agent to its vectors and hosts in North America and Europe. Annu Rev Entomol. 1991;36:587–609. doi: 10.1146/annurev.en.36.010191.003103. [DOI] [PubMed] [Google Scholar]
  11. Mather T. N., Wilson M. L., Moore S. I., Ribeiro J. M., Spielman A. Comparing the relative potential of rodents as reservoirs of the Lyme disease spirochete (Borrelia burgdorferi). Am J Epidemiol. 1989 Jul;130(1):143–150. doi: 10.1093/oxfordjournals.aje.a115306. [DOI] [PubMed] [Google Scholar]
  12. McLean R. G., Ubico S. R., Hughes C. A., Engstrom S. M., Johnson R. C. Isolation and characterization of Borrelia burgdorferi from blood of a bird captured in the Saint Croix River Valley. J Clin Microbiol. 1993 Aug;31(8):2038–2043. doi: 10.1128/jcm.31.8.2038-2043.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Noppa L., Burman N., Sadziene A., Barbour A. G., Bergström S. Expression of the flagellin gene in Borrelia is controlled by an alternative sigma factor. Microbiology. 1995 Jan;141(Pt 1):85–93. doi: 10.1099/00221287-141-1-85. [DOI] [PubMed] [Google Scholar]
  14. Olsén B., Jaenson T. G., Noppa L., Bunikis J., Bergström S. A Lyme borreliosis cycle in seabirds and Ixodes uriae ticks. Nature. 1993 Mar 25;362(6418):340–342. doi: 10.1038/362340a0. [DOI] [PubMed] [Google Scholar]
  15. Picken R. N. Polymerase chain reaction primers and probes derived from flagellin gene sequences for specific detection of the agents of Lyme disease and North American relapsing fever. J Clin Microbiol. 1992 Jan;30(1):99–114. doi: 10.1128/jcm.30.1.99-114.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rosa P. A., Hogan D., Schwan T. G. Polymerase chain reaction analyses identify two distinct classes of Borrelia burgdorferi. J Clin Microbiol. 1991 Mar;29(3):524–532. doi: 10.1128/jcm.29.3.524-532.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rosa P. A., Schwan T. G. A specific and sensitive assay for the Lyme disease spirochete Borrelia burgdorferi using the polymerase chain reaction. J Infect Dis. 1989 Dec;160(6):1018–1029. doi: 10.1093/infdis/160.6.1018. [DOI] [PubMed] [Google Scholar]
  18. Shoberg R. J., Jonsson M., Sadziene A., Bergström S., Thomas D. D. Identification of a highly cross-reactive outer surface protein B epitope among diverse geographic isolates of Borrelia spp. causing Lyme disease. J Clin Microbiol. 1994 Feb;32(2):489–500. doi: 10.1128/jcm.32.2.489-500.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stanek G., Hirschl A., Stemberger H., Wewalka G., Wiedermann G. Does Lyme borreliosis also occur in tropical and subtropical areas? Zentralbl Bakteriol Mikrobiol Hyg A. 1987 Feb;263(3):491–495. doi: 10.1016/s0176-6724(87)80117-7. [DOI] [PubMed] [Google Scholar]
  20. Weisbrod A. R., Johnson R. C. Lyme disease and migrating birds in the Saint Croix River Valley. Appl Environ Microbiol. 1989 Aug;55(8):1921–1924. doi: 10.1128/aem.55.8.1921-1924.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES