Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Dec;33(12):3304–3307. doi: 10.1128/jcm.33.12.3304-3307.1995

Comparison of different PCR approaches for characterization of Burkholderia (Pseudomonas) cepacia isolates.

P Y Liu 1, Z Y Shi 1, Y J Lau 1, B S Hu 1, J M Shyr 1, W S Tsai 1, Y H Lin 1, C Y Tseng 1
PMCID: PMC228693  PMID: 8586722

Abstract

In this study, we evaluated three PCR methods for epidemiological typing of Burkholderia (Pseudomonas) cepacia--PCR-ribotyping, arbitrarily primed PCR (AP-PCR) and enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR)--and compared them with pulsed-field gel electrophoresis. The analysis was performed with 31 isolates of B. cepacia, comprising 23 epidemiologically unrelated isolates and 8 isolates collected from the same patient during two episodes of bacteremia. Pulsed-field gel electrophoresis, ERIC-PCR, and AP-PCR identified 23 distinct types among the 23 unrelated isolates, while PCR-ribotyping only identified 12 strain types, even after AluI digestion of the amplification products. Among the eight isolates collected from the same patient, all typing techniques revealed two clones of strains. The day-to-day reproducibilities of PCR-ribotyping and ERIC-PCR were good, while greater day-to-day variations were noted in the fingerprints obtained by AP-PCR. We conclude that all three PCR techniques are useful for rapid epidemiological typing of B. cepacia, but ERIC-PCR seems to be more reproducible and discriminative.

Full Text

The Full Text of this article is available as a PDF (416.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. J., Kuhns J. S., Vasil M. L., Gerding D. N., Janoff E. N. DNA fingerprinting by pulsed field gel electrophoresis and ribotyping to distinguish Pseudomonas cepacia isolates from a nosocomial outbreak. J Clin Microbiol. 1991 Mar;29(3):648–649. doi: 10.1128/jcm.29.3.648-649.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berkelman R. L., Godley J., Weber J. A., Anderson R. L., Lerner A. M., Petersen N. J., Allen J. R. Pseudomonas cepacia peritonitis associated with contamination of automatic peritoneal dialysis machines. Ann Intern Med. 1982 Apr;96(4):456–458. doi: 10.7326/0003-4819-96-4-456. [DOI] [PubMed] [Google Scholar]
  3. Bingen E. H., Weber M., Derelle J., Brahimi N., Lambert-Zechovsky N. Y., Vidailhet M., Navarro J., Elion J. Arbitrarily primed polymerase chain reaction as a rapid method to differentiate crossed from independent Pseudomonas cepacia infections in cystic fibrosis patients. J Clin Microbiol. 1993 Oct;31(10):2589–2593. doi: 10.1128/jcm.31.10.2589-2593.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dasen S. E., LiPuma J. J., Kostman J. R., Stull T. L. Characterization of PCR-ribotyping for Burkholderia (Pseudomonas) cepacia. J Clin Microbiol. 1994 Oct;32(10):2422–2424. doi: 10.1128/jcm.32.10.2422-2424.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dolzani L., Tonin E., Lagatolla C., Prandin L., Monti-Bragadin C. Identification of Acinetobacter isolates in the A. calcoaceticus-A. baumannii complex by restriction analysis of the 16S-23S rRNA intergenic-spacer sequences. J Clin Microbiol. 1995 May;33(5):1108–1113. doi: 10.1128/jcm.33.5.1108-1113.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ellsworth D. L., Rittenhouse K. D., Honeycutt R. L. Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques. 1993 Feb;14(2):214–217. [PubMed] [Google Scholar]
  7. Henderson D. K., Baptiste R., Parrillo J., Gill V. J. Indolent epidemic of Pseudomonas cepacia bacteremia and pseudobacteremia in an intensive care unit traced to a contaminated blood gas analyzer. Am J Med. 1988 Jan;84(1):75–81. doi: 10.1016/0002-9343(88)90011-3. [DOI] [PubMed] [Google Scholar]
  8. Jarvis W. R., Olson D., Tablan O., Martone W. J. The epidemiology of nosocomial Pseudomonas cepacia infections: endemic infections. Eur J Epidemiol. 1987 Sep;3(3):233–236. doi: 10.1007/BF00149729. [DOI] [PubMed] [Google Scholar]
  9. Johnson W. M., Tyler S. D., Rozee K. R. Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J Clin Microbiol. 1994 Apr;32(4):924–930. doi: 10.1128/jcm.32.4.924-930.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kostman J. R., Edlind T. D., LiPuma J. J., Stull T. L. Molecular epidemiology of Pseudomonas cepacia determined by polymerase chain reaction ribotyping. J Clin Microbiol. 1992 Aug;30(8):2084–2087. doi: 10.1128/jcm.30.8.2084-2087.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liu P. Y., Lau Y. J., Hu B. S., Shir J. M., Cheung M. H., Shi Z. Y., Tsai W. S. Use of PCR to study epidemiology of Serratia marcescens isolates in nosocomial infection. J Clin Microbiol. 1994 Aug;32(8):1935–1938. doi: 10.1128/jcm.32.8.1935-1938.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liu P. Y., Lau Y. J., Hu B. S., Shyr J. M., Shi Z. Y., Tsai W. S., Lin Y. H., Tseng C. Y. Analysis of clonal relationships among isolates of Shigella sonnei by different molecular typing methods. J Clin Microbiol. 1995 Jul;33(7):1779–1783. doi: 10.1128/jcm.33.7.1779-1783.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Prevost G., Jaulhac B., Piemont Y. DNA fingerprinting by pulsed-field gel electrophoresis is more effective than ribotyping in distinguishing among methicillin-resistant Staphylococcus aureus isolates. J Clin Microbiol. 1992 Apr;30(4):967–973. doi: 10.1128/jcm.30.4.967-973.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rabkin C. S., Jarvis W. R., Anderson R. L., Govan J., Klinger J., LiPuma J., Martone W. J., Monteil H., Richard C., Shigeta S. Pseudomonas cepacia typing systems: collaborative study to assess their potential in epidemiologic investigations. Rev Infect Dis. 1989 Jul-Aug;11(4):600–607. doi: 10.1093/clinids/11.4.600. [DOI] [PubMed] [Google Scholar]
  15. Rutala W. A., Weber D. J., Thomann C. A., John J. F., Saviteer S. M., Sarubbi F. A. An outbreak of Pseudomonas cepacia bacteremia associated with a contaminated intra-aortic balloon pump. J Thorac Cardiovasc Surg. 1988 Jul;96(1):157–161. [PubMed] [Google Scholar]
  16. Steere A. C., Tenney J. H., Mackel D. C., Snyder M. J., Polakavetz S., Dunne M. E., Dixon R. Pseudomonas species bacteremia caused by contaminated normal human serum albumin. J Infect Dis. 1977 May;135(5):729–735. doi: 10.1093/infdis/135.5.729. [DOI] [PubMed] [Google Scholar]
  17. Steinbach S., Sun L., Jiang R. Z., Flume P., Gilligan P., Egan T. M., Goldstein R. Transmissibility of Pseudomonas cepacia infection in clinic patients and lung-transplant recipients with cystic fibrosis. N Engl J Med. 1994 Oct 13;331(15):981–987. doi: 10.1056/NEJM199410133311504. [DOI] [PubMed] [Google Scholar]
  18. VanCouwenberghe C. J., Cohen S. H., Tang Y. J., Gumerlock P. H., Silva J., Jr Genomic fingerprinting of epidemic and endemic strains of Stenotrophomonas maltophilia (formerly Xanthomonas maltophilia) by arbitrarily primed PCR. J Clin Microbiol. 1995 May;33(5):1289–1291. doi: 10.1128/jcm.33.5.1289-1291.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Versalovic J., Koeuth T., Lupski J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991 Dec 25;19(24):6823–6831. doi: 10.1093/nar/19.24.6823. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES