Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1995 Dec;33(12):3328–3332. doi: 10.1128/jcm.33.12.3328-3332.1995

Random amplified polymorphic DNA analysis of clinically and environmentally isolated Cryptococcus neoformans in Nagasaki.

Y Yamamoto 1, S Kohno 1, H Koga 1, H Kakeya 1, K Tomono 1, M Kaku 1, T Yamazaki 1, M Arisawa 1, K Hara 1
PMCID: PMC228701  PMID: 8586730

Abstract

We examined clinical (pulmonary cryptococcosis and cryptococcal meningitis) and environmental (pigeon excreta) isolates of Cryptococcus neoformans var. neoformans (serotype A) in the southern Japanese prefecture of Nagasaki. The random amplified polymorphic DNA profiles obtained by using three primers revealed six patterns among 21 clinical isolates and three patterns among 8 environmental isolates. Pattern I was the most common (18 of 29 isolates) and was found among isolates obtained throughout the entire Nagasaki Prefecture. Patterns I, III, and IV were found among both clinical and environmental isolates. Patterns I and IV had a characteristic distribution, and in particular, pattern IV was isolated exclusively (five of six isolates) from isolates from Nagasaki City. Two environmental isolates from two locations associated strongly with two patients revealed identical random amplified polymorphic DNA patterns (patterns I and IV) for isolates from each patient. Our results suggest that clinical and environmental isolates belong to the same pool of C. neoformans isolates and that these isolates have certain geographic locations, although the number of isolated strains was limited.

Full Text

The Full Text of this article is available as a PDF (394.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Currie B. P., Freundlich L. F., Casadevall A. Restriction fragment length polymorphism analysis of Cryptococcus neoformans isolates from environmental (pigeon excreta) and clinical sources in New York City. J Clin Microbiol. 1994 May;32(5):1188–1192. doi: 10.1128/jcm.32.5.1188-1192.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dromer F., Varma A., Ronin O., Mathoulin S., Dupont B. Molecular typing of Cryptococcus neoformans serotype D clinical isolates. J Clin Microbiol. 1994 Oct;32(10):2364–2371. doi: 10.1128/jcm.32.10.2364-2371.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EMMONS C. W. Saprophytic sources of Cryptococcus neoformans associated with the pigeon (Columba livia). Am J Hyg. 1955 Nov;62(3):227–232. doi: 10.1093/oxfordjournals.aje.a119775. [DOI] [PubMed] [Google Scholar]
  4. Fessel W. J. Cryptococcal meningitis after unusual exposures to birds. N Engl J Med. 1993 May 6;328(18):1354–1355. doi: 10.1056/NEJM199305063281816. [DOI] [PubMed] [Google Scholar]
  5. Goodwin P. H., Annis S. L. Rapid identification of genetic variation and pathotype of Leptosphaeria maculans by random amplified polymorphic DNA assay. Appl Environ Microbiol. 1991 Sep;57(9):2482–2486. doi: 10.1128/aem.57.9.2482-2486.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grattard F., Pozzetto B., Berthelot P., Rayet I., Ros A., Lauras B., Gaudin O. G. Arbitrarily primed PCR, ribotyping, and plasmid pattern analysis applied to investigation of a nosocomial outbreak due to Enterobacter cloacae in a neonatal intensive care unit. J Clin Microbiol. 1994 Mar;32(3):596–602. doi: 10.1128/jcm.32.3.596-602.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haynes K. A., Sullivan D. J., Coleman D. C., Clarke J. C., Emilianus R., Atkinson C., Cann K. J. Involvement of multiple Cryptococcus neoformans strains in a single episode of cryptococcosis and reinfection with novel strains in recurrent infection demonstrated by random amplification of polymorphic DNA and DNA fingerprinting. J Clin Microbiol. 1995 Jan;33(1):99–102. doi: 10.1128/jcm.33.1.99-102.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kohno S., Varma A., Kwon-Chung K. J., Hara K. Epidemiology studies of clinical isolates of Cryptococcus neoformans of Japan by restriction fragment length polymorphism. Kansenshogaku Zasshi. 1994 Dec;68(12):1512–1517. doi: 10.11150/kansenshogakuzasshi1970.68.1512. [DOI] [PubMed] [Google Scholar]
  9. Linton C. J., Jalal H., Leeming J. P., Millar M. R. Rapid discrimination of Mycobacterium tuberculosis strains by random amplified polymorphic DNA analysis. J Clin Microbiol. 1994 Sep;32(9):2169–2174. doi: 10.1128/jcm.32.9.2169-2174.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Loudon K. W., Burnie J. P., Coke A. P., Matthews R. C. Application of polymerase chain reaction to fingerprinting Aspergillus fumigatus by random amplification of polymorphic DNA. J Clin Microbiol. 1993 May;31(5):1117–1121. doi: 10.1128/jcm.31.5.1117-1121.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MUCHMORE H. G., RHOADES E. R., NIX G. E., FELTON F. G., CARPENTER R. E. Occurrence of Cryptococcus neoformans in the environment of three geographically associated cases of cryptoccal meningitis. N Engl J Med. 1963 May 16;268:1112–1114. doi: 10.1056/NEJM196305162682005. [DOI] [PubMed] [Google Scholar]
  12. Meyer W., Mitchell T. G., Freedman E. Z., Vilgalys R. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J Clin Microbiol. 1993 Sep;31(9):2274–2280. doi: 10.1128/jcm.31.9.2274-2280.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Micheli M. R., Bova R., Pascale E., D'Ambrosio E. Reproducible DNA fingerprinting with the random amplified polymorphic DNA (RAPD) method. Nucleic Acids Res. 1994 May 25;22(10):1921–1922. doi: 10.1093/nar/22.10.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Perfect J. R., Ketabchi N., Cox G. M., Ingram C. W., Beiser C. L. Karyotyping of Cryptococcus neoformans as an epidemiological tool. J Clin Microbiol. 1993 Dec;31(12):3305–3309. doi: 10.1128/jcm.31.12.3305-3309.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Polacheck I., Lebens G. A. Electrophoretic karyotype of the pathogenic yeast Cryptococcus neoformans. J Gen Microbiol. 1989 Jan;135(1):65–71. doi: 10.1099/00221287-135-1-65. [DOI] [PubMed] [Google Scholar]
  16. Ruiz A., Fromtling R. A., Bulmer G. S. Distribution of Cryptococcus neoformans in a natural site. Infect Immun. 1981 Feb;31(2):560–563. doi: 10.1128/iai.31.2.560-563.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schierwater B., Ender A. Different thermostable DNA polymerases may amplify different RAPD products. Nucleic Acids Res. 1993 Sep 25;21(19):4647–4648. doi: 10.1093/nar/21.19.4647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Varma A., Kwon-Chung K. J. Restriction fragment polymorphism in mitochondrial DNA of Cryptococcus neoformans. J Gen Microbiol. 1989 Dec;135(12):3353–3362. doi: 10.1099/00221287-135-12-3353. [DOI] [PubMed] [Google Scholar]
  19. Varma A., Swinne D., Staib F., Bennett J. E., Kwon-Chung K. J. Diversity of DNA fingerprints in Cryptococcus neoformans. J Clin Microbiol. 1995 Jul;33(7):1807–1814. doi: 10.1128/jcm.33.7.1807-1814.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zhu H., Qu F., Zhu L. H. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 1993 Nov 11;21(22):5279–5280. doi: 10.1093/nar/21.22.5279. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES